Exercises in Introduction to Mathematical Statistics (Ch. 2)

Tomoki Okuno

September 14, 2022

Note

- Not all solutions are provided: exercises that are too simple or not very important to me are skipped.
- Texts in red are just attentions to me. Please ignore them.

2 Multivariate Distributions

2.1 Distributions of Two Random Variables

2.1.1. Let $f\left(x_{1}, x_{2}\right)=4 x_{1} x_{2}, 0<x_{1}<1,0<x_{2}<1$, zero elsewhere, be the pdf of X_{1} and X_{2}. Find $P\left(0<X_{1}<\frac{1}{2}, \frac{1}{4}<X_{2}<1\right), P\left(X_{1}=X_{2}\right), P\left(X_{1}<X_{2}\right)$, and $P\left(X_{1} \leq X_{2}\right)$.

Solution.

$$
\begin{aligned}
& P\left(0<X_{1}<\frac{1}{2}, \frac{1}{4}<X_{2}<1\right)=\int_{1 / 4}^{1} \int_{0}^{1 / 2} 4 x_{1} x_{2} d x_{1} d x_{2}=\cdots=\frac{15}{64} \\
& P\left(X_{1}=X_{2}\right)=0 \text { since the support is a segment not area } \\
& P\left(X_{1}<X_{2}\right)=\int_{0}^{1} \int_{0}^{x_{2}} 4 x_{1} x_{2} d x_{1} d x_{2}=\left.\int_{0}^{1} 2 x_{1}^{2} x_{2}\right|_{x_{1}=0} ^{x_{1}=x_{2}} d x_{1} d x_{2}=\int_{0}^{1} 2 x_{2}^{3} d x_{2}=\frac{1}{2} . \\
& P\left(X_{1} \leq X_{2}\right)=P\left(X_{1}<X_{2}\right)+P\left(X_{1}=X_{2}\right)=P\left(X_{1}<X_{2}\right)=\frac{1}{2} .
\end{aligned}
$$

2.1.2. Let $A_{1}=\{(x, y): x \leq 2, y \leq 4\}, A_{2}=\{(x, y): x \leq 2, y \leq 1\}, A_{3}=\{(x, y): x \leq 0, y \leq 4\}$, and $A_{4}=\{(x, y): x \leq 0, y \leq 1\}$ be subsets of the space \mathcal{A} of two random variables X and Y, which is the entire two-dimensional plane. If $P\left(A_{1}\right)=\frac{7}{8}, P\left(A_{2}\right)=\frac{4}{8}, P\left(A_{3}\right)=\frac{3}{8}$, and $P\left(A_{4}\right)=\frac{2}{8}$, find $P\left(A_{5}\right)$, where $A_{5}=\{(x, y): 0<x \leq 2,1<y \leq 4\}$.
Solution. $P\left(A_{5}\right)=P\left(A_{1}\right)-P\left(A_{2}\right)-P\left(A_{3}\right)+P\left(A_{4}\right)=\frac{2}{8}$.
2.1.3. Let $F(x, y)$ be the distribution function of X and Y. For all real constants $a<b, c<d$, show that

$$
P(a<X \leq b, c<Y \leq d)=F(b, d)-F(b, c)-F(a, d)+F(a, c) .
$$

Solution.

$$
\begin{aligned}
P(a<X \leq b, c<Y \leq d) & =P(X \leq b, c<Y \leq d)-P(X \leq a, c<Y \leq d) \\
& =P(X \leq b, Y \leq d)-P(X \leq b, Y \leq c)-P(X \leq a, Y \leq d)+P(X \leq a, Y \leq c) \\
& =F(b, d)-F(b, c)-F(a, d)+F(a, c) .
\end{aligned}
$$

2.1.7. Let $f(x, y)=e^{-x-y}, 0<x<\infty, 0<y<\infty$, zero elsewhere, be the pdf of X and Y. Then if $Z=X+Y$, compute $P(Z \leq 0), P(Z \leq 6)$, and, more generally, $P(Z \leq z)$, for $0<z<\infty$. What is the pdf of Z.

Solution.

Compute the general probability:

$$
\begin{aligned}
F(z) & =P(Z \leq z)=P(X+Y \leq z)=P(Y \leq-X+z) \\
& =\int_{0}^{z} \int_{0}^{z-x} e^{-x-y} d y d x=\int_{0}^{z}\left(e^{-x}-e^{-z}\right) d x=1-e^{-z}-z e^{-z}
\end{aligned}
$$

Hence, $P(Z \leq 0)=0, P(Z \leq 6)=1-7 e^{-6}$, and $f(z)=F^{\prime}(z)=z e^{-z}, 0<z<\infty$, zero elsewhere.
2.1.8. Let X and Y have the pdf $f(x, y)=1,0<x<1,0<y<1$, zero elsewhere. Find the cdf and pdf of the product $Z=X Y$.

Solution.

If $z \leq 0$, then $F(z)=P(Z \leq z)=0$ because $Z>0$.

$$
F(z)=P(Z \leq z)=P(Y \leq z / X)=\int_{0}^{z} \int_{0}^{1} d y d x+\int_{z}^{1} \int_{0}^{z / x} d y d x=z-z \log z, \quad 0<z<1
$$

and one $z \geq 1$. Hence, the pdf $\operatorname{pf} Z$ is

$$
f_{Z}(z)=F^{\prime}(z)=-\log z, \quad 0<z<1
$$

zero elsewhere.
2.1.11. Let X_{1} and X_{2} have the joint pdf $f\left(x_{1}, x_{2}\right)=15 x_{1}^{2} x_{2}, 0<x_{1}<x_{2}<1$, zero elsewhere. Find the marginal pdfs and compute $P\left(X_{1}+X_{2} \leq 1\right)$.

Solution.

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =\int_{x_{1}}^{1} 15 x_{1}^{2} x_{2} d x_{2}=\frac{15 x_{1}^{2}\left(1-x_{1}^{2}\right)}{2}, \quad 0<x_{1}<1 \\
f_{X_{2}}\left(x_{2}\right) & =\int_{0}^{x_{2}} 15 x_{1}^{2} x_{2} d x_{1}=5 x_{2}^{4}, \quad 0<x_{2}<1 \\
P\left(X_{1}+X_{2} \leq 1\right) & =15 \int_{0}^{1 / 2} x_{1}^{2}\left(\int_{x_{1}}^{1-x_{1}} x_{2} d x_{2}\right) d x_{1}=\cdots=\frac{5}{64} .
\end{aligned}
$$

2.1.13. Let X_{1}, X_{2} be two random variables with the joint pmf $p\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) / 12$, for $x_{1}=1,2, x_{2}=$ 1,2 , zero elsewhere. Compute $E\left(X_{1}\right), E\left(X_{1}^{2}\right), E\left(X_{2}\right), E\left(X_{2}^{2}\right)$, and $E\left(X_{1} X_{2}\right)$. Is $E\left(X_{1} X_{2}\right)=E\left(X_{1}\right) E\left(X_{2}\right)$? Find $E\left(2 X_{1}-6 X_{2}^{2}+7 X_{1} X_{2}\right)$.

Solution.

First, find the marginal pdfs:

$$
p_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}=1}^{2} \frac{x_{1}+x_{2}}{12}=\frac{x_{1}+1}{12}+\frac{x_{1}+2}{12}=\frac{2 x_{1}+3}{12}, \quad p_{X_{2}}\left(x_{2}\right)=\frac{2 x_{2}+3}{12} .
$$

Hence

$$
\begin{aligned}
& E\left(X_{1}\right)=\sum_{x_{1}=1}^{2} x_{1} p\left(x_{1}\right)=p_{X_{1}}(1)+2 p_{X_{1}}(2)=\frac{5}{12}+\frac{14}{12}=\frac{19}{12} \\
& E\left(X_{1}^{2}\right)=p_{X_{1}}(1)+2^{2} p_{X_{1}}(2)=\frac{33}{12} \\
& E\left(X_{2}\right)=E\left(X_{1}\right)=\frac{19}{12}, \quad E\left(X_{2}^{2}\right)=E\left(X_{1}^{2}\right)=\frac{33}{12}
\end{aligned}
$$

Also, use the joint mgf to obtain

$$
E\left(X_{1} X_{2}\right)=\sum_{x_{1} x_{2}} x_{1} x_{2} p\left(x_{1}, x_{2}\right)=p(1,1)+2 p(2,1)+2 p(1,2)+4 p(2,2)=\frac{5}{2} \neq E\left(X_{1}\right) E\left(X_{2}\right)
$$

Therefore,

$$
E\left(2 X_{1}-6 X_{2}^{2}+7 X_{1} X_{2}\right)=2 \frac{19}{12}-6 \frac{33}{12}+7 \frac{5}{2}=\frac{25}{6}
$$

2.1.15. Let X_{1}, X_{2} be two random variables with joint $\operatorname{pmf} p\left(x_{1}, x_{2}\right)=(1 / 2)^{x_{1}+x_{2}}$, for $1 \leq x_{i}<\infty$, $i=1,2$, where X_{1} and X_{2} are integers, zero elsewhere. Determine the joint mgf of X_{1}, X_{2}. Show that $M\left(t_{1}, t_{2}\right)=M\left(t_{1}, 0\right) M\left(0, t_{2}\right)$.

Solution.

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2}=1}^{\infty}(1 / 2)^{x_{1}+x_{2}}=\frac{(1 / 2)^{x_{1}+1}}{1-1 / 2}=(1 / 2)^{x_{1}}, \quad p\left(x_{1}\right)=(1 / 2)^{x_{2}} \\
M_{X_{1}}(t) & =\sum_{x_{1}=1}^{\infty}\left(e^{t} / 2\right)^{x_{1}}=\frac{e^{t} / 2}{1-e^{t} / 2}=\frac{e^{t}}{2-e^{t}}=M_{X_{2}}(t), \quad t<\log 2 \\
M\left(t_{1}, t_{2}\right) & =\sum_{x_{1}=1}^{\infty} \sum_{x_{2}=1}^{\infty} e^{t_{1} x_{1}+t_{2} x_{2}}(1 / 2)^{x_{1}+x_{2}}=\sum_{x_{1}=1}^{\infty}\left(e^{t_{1}} / 2\right)^{x_{1}} \sum_{x_{2}=1}^{\infty}\left(e^{t_{2}} / 2\right)^{x_{2}} \\
& =M_{X_{1}}\left(t_{1}\right) M_{X_{2}}\left(t_{2}\right)=M\left(t_{1}, 0\right) M\left(0, t_{2}\right)
\end{aligned}
$$

2.2 Transformations: Bivariate Random Variables

2.2.1. If $p\left(x_{1}, x_{2}\right)=\left(\frac{2}{3}\right)^{x_{1}+x_{2}}\left(\frac{1}{3}\right)^{2-x_{1}-x_{2}},\left(x_{1}, x_{2}\right)=(0,0),(0,1),(1,0),(1,1)$, zero elsewhere, is the joint pmf of X_{1} and X_{2}, find the joint pmf of $Y_{1}=X_{1}-X_{2}$ and $Y_{2}=X_{1}+X_{2}$.

Solution.

The support of $\left(Y_{1}, Y_{2}\right)$ is $\left(y_{1}, y_{2}\right)=(0,0),(-1,1),(1,1),(0,2)$. Since the one-to-one inverse functions are $x_{1}=\left(y_{1}+y_{2}\right) / 2$ and $x_{2}=\left(y_{2}-y_{1}\right) / 2$,

$$
p_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=p\left(\frac{y_{1}+y_{2}}{2}, \frac{y_{2}-y_{1}}{2}\right)=\left(\frac{2}{3}\right)^{y_{1}}\left(\frac{1}{3}\right)^{2-y_{1}}
$$

zero outside the support.
2.2.5. Let X_{1} and X_{2} be continuous random variables with the joint pdf $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right),-\infty<x_{i}<\infty$, $i=1,2$. Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{2}$.
(a) Find the joint pdf $f_{Y_{1}, Y_{2}}$.

Solution.

The inverse functions are $x_{1}=y_{1}-y_{2}, x_{2}=y_{2}$ and then the Jacobian $J=1$. Hence

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, X_{2}}\left(y_{1}-y_{2}, y_{2}\right)|J|=f_{X_{1}, X_{2}}\left(y_{1}-y_{2}, y_{2}\right)
$$

(b) Show that

$$
\begin{equation*}
f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(y_{1}-y_{2}, y_{2}\right) d y_{2} \tag{2.2.5}
\end{equation*}
$$

which is sometimes called the convolution formula.

Solution.

The support is $-\infty<y_{1}-y_{2}<\infty,-\infty<y_{2}<\infty$, i.e., $-\infty<y_{i}<\infty, i=1$, 2 , which gives (2.2.5).
2.2.6. Suppose X_{1} and X_{2} have the joint pdf $f\left(x_{1}, x_{2}\right)=e^{-\left(x_{1}+x_{2}\right)}, 0<x_{i}<\infty, i=1,2$, zero elsewhere.
(a) Use formula (2.2.5) to find the pdf of $Y_{1}=X_{1}+X_{2}$.

Solution.

Since the support of $\left(Y_{1}, Y_{2}\right)$ is $0<y_{1}-y_{2}<\infty, 0<y_{2}<\infty \Rightarrow 0<y_{2}<y_{1}<\infty$,

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(y_{1}-y_{2}, y_{2}\right) d y_{2}=\int_{0}^{y_{1}} e^{-y_{1}} d y_{2}=y_{1} e^{-y_{1}}, \quad y_{1}>0 .
$$

(b) Find the mgf of Y_{1}

Solution.

$$
M(t)=\int_{0}^{\infty} y_{1} e^{-(1-t) y_{1}} d y_{1}=\Gamma(2)\left(\frac{1}{1-t}\right)^{2}=\frac{1}{(1-t)^{2}}, \quad t<1 .
$$

2.2.7. Use the formula (2.2.5) to find the pdf of $Y_{1}=X_{1}+X_{2}$, where X_{1} and X_{2} have the joint pdf $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=2 e^{-\left(x_{1}+x_{2}\right)}, 0<x_{1}<x_{2}<\infty$, zero elsewhere.

Solution.

Since the support of Y_{1} and Y_{2} is $0<y_{1}-y_{2}<y_{2}, 0<y_{2}<\infty \Rightarrow 0<y_{1} / 2<y_{2}<y_{1}<\infty$,

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(y_{1}-y_{2}, y_{2}\right) d y_{2}=\int_{y_{1} / 2}^{y_{1}} 2 e^{-y_{1}} d y_{2}=y_{1} e^{-y_{1}}, \quad y_{1}>0,
$$

which means $Y \sim \operatorname{Exp}(1)$.
2.2.8. Suppose X_{1} and X_{2} have the joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}e^{-x_{1}} e^{-x_{2}} & x_{1}>0, x_{2}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

For constants $w_{1}>0$ and $w_{2}>0$, let $W=w_{1} X_{1}+w_{2} X_{2}$.
(a) Show that the pdf pf W is

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{w_{1}-w_{2}}\left(e^{-w / w_{1}}-e^{-w / w_{2}}\right) & w>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Solution.

Let $Z=w_{1} X_{1}-w_{2} X_{2}$. This is one-to-one transformation so that we have

$$
x_{1}=\frac{w+z}{2 w_{1}}, \quad x_{2}=\frac{w-z}{2 w_{2}} .
$$

Then the Jacobian is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial w} & \frac{\partial x_{1}}{\partial z_{1}} \\
\frac{\partial x_{2}}{\partial w} & \frac{\partial x_{2}}{\partial z}
\end{array}\right|=\left|\begin{array}{cc}
1 / 2 w_{1} & 1 / 2 w_{1} \\
1 / 2 w_{2} & -1 / 2 w_{2}
\end{array}\right|=-\frac{1}{2 w_{1} w_{2}} .
$$

Hence the joint pdf of W and Z is

$$
f_{W, Z}(w, z)=f\left(\frac{w+z}{2 w_{1}}, \frac{w-z}{2 w_{2}}\right)|J|=e^{-\frac{w+z}{2 w_{1}}} e^{-\frac{w-z}{2 w_{2}}} \frac{1}{2 w_{1} w_{2}}=\frac{1}{2 w_{1} w_{2}} e^{-\frac{w_{1}+w_{2}}{2 w_{1} w_{2}} w^{\frac{w_{1}-w_{2}}{\frac{2}{2} w_{2}} z} . . ~ . ~}
$$

The support is

$$
\frac{w+z}{2 w_{1}}>0, \quad \frac{w-z}{2 w_{2}}>0 \quad \Rightarrow \quad w>0, \quad-w<z<w .
$$

Hence the marginal pdf of W is

$$
\begin{aligned}
f_{W}(w) & =\frac{1}{2 w_{1} w_{2}} e^{-\frac{w_{1}+w_{2}}{2 w_{1} w_{2}} w} \int_{-w}^{w} e^{\frac{w_{1}-w_{2}}{2 w_{1} w_{2}} z} d z \\
& =\frac{1}{w_{1}-w_{2}} e^{-\frac{w_{1}+w_{2}}{2 w_{1} w_{2}} w}\left[e^{\frac{w_{1}-w_{2}}{2 w_{1} w_{2}} z}\right]_{-w}^{w} \\
& =\frac{1}{w_{1}-w_{2}} e^{-\frac{w_{1}+w_{2}}{2 w_{1} w_{2}} w}\left(e^{\frac{w_{1}-w_{2}}{2 w_{1} w_{2}} w}-e^{-\frac{w_{1}-w_{2}}{2 w_{1} w_{2}} w}\right) \\
& =\frac{1}{w_{1}-w_{2}}\left(e^{-w / w_{1}}-e^{-w / w_{2}}\right), \quad w>0
\end{aligned}
$$

(b) Verify that $f_{W}(w)>0$ for $w>0$.

Solution.

If $w_{1}>w_{2}$, then $w_{1}-w_{2}>0, e^{-w / w_{1}}-e^{-w / w_{2}}>0$ because $g(x)=e^{-a / x}$ is increasing for $a>0$.
If $w_{1}<w_{2}$, then $w_{1}-w_{2}<0, e^{-w / w_{1}}-e^{-w / w_{2}}<0$. Hence, $f_{W}(w)>0$ for $w>0$.
(c) Note that the pdf $f_{W}(w)$ has an indeterminate form when $w_{1}=w_{2}$. Rewrite $f_{W}(w)$ using h defined as $w_{1}-w_{2}=h$. Then use l'H^opital's rule to show that when $w_{1}=w_{2}$, the pdf is given by $f_{W}(w)=$ $\left(w / w_{1}^{2}\right) \exp \left\{-w / w_{1}\right\}$ for $w>0$ and zero elsewhere.

Solution.

When $w_{1}=w_{2}$, or equivalently $h \rightarrow 0$,

$$
\begin{aligned}
\lim _{h \rightarrow 0} f_{W}(w) & =\lim _{h \rightarrow 0} \frac{\left[e^{-w / w_{1}}-e^{-w /\left(w_{1}-h\right)}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{d}{d h}\left[e^{-w / w_{1}}-e^{-w /\left(w_{1}-h\right)}\right]}{d h / d h} \\
& =\lim _{h \rightarrow 0} \frac{\left[0+\left\{w /\left(w_{1}-h\right)^{2}\right\} e^{-w /\left(w_{1}-h\right)}\right]}{1} \\
& =w / w_{1}^{2} e^{-w / w_{1}} .
\end{aligned}
$$

2.3 Conditional Distributions and Expectations

2.3.5. Let X_{1} and X_{2} be two random variables such that the conditional distributions and means exist. Show that:
(a) $E\left(X_{1}+X_{2} \mid X_{2}\right)=E\left(X_{1} \mid X_{2}\right)+X_{2}$.

Solution.

Consider $X_{2}=x_{2}$ (a fixed number) first.

$$
E\left(X_{1}+X_{2} \mid X_{2}=x_{2}\right)=E\left(X_{1} \mid X_{2}=x_{2}\right)+x_{2} \Rightarrow E\left(X_{1}+X_{2} \mid X_{2}\right)=E\left(X_{1} \mid X_{2}\right)+X_{2}
$$

(b) $E\left(u\left(X_{2}\right) \mid X_{2}\right)=u\left(X_{2}\right)$.

Solution. $E\left(u\left(X_{2}\right) \mid X_{2}=x_{2}\right)=E\left(u\left(x_{2}\right)\right)=u\left(x_{2}\right) \Rightarrow E\left(u\left(X_{2}\right) \mid X_{2}\right)=u\left(X_{2}\right)$.
2.3.6. Let the joint pdf of X and Y be given by

$$
f(x, y)= \begin{cases}\frac{2}{(1+x+y)^{3}} & 0<x<\infty, 0<x<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Compute the marginal pdf of X and the conditional pdf of Y, given $X=x$.

Solution.

$$
\begin{aligned}
f(x) & =\int_{0}^{\infty} \frac{2}{(1+x+y)^{3}} d y=\left[-\frac{1}{(1+x+y)^{2}}\right]_{0}^{\infty}=\frac{1}{(1+x)^{2}} \quad 0<x<\infty \\
f(y \mid x) & =\frac{f(x, y)}{f(x)}=\frac{2(1+x)^{2}}{(1+x+y)^{3}} \quad 0<x<\infty, 0<x<\infty
\end{aligned}
$$

zero elsewhere.
(b) For a fixed $X=x$, compute $E(1+x+Y \mid x)$ and use the result to compute $E(Y \mid x)$.

Solution.

$$
E(1+x+Y \mid x)=\int_{0}^{\infty}(1+x+y) \frac{2(1+x)^{2}}{(1+x+y)^{3}} d y=\int_{0}^{\infty} \frac{2(1+x)^{2}}{(1+x+y)^{2}} d y=\left[\frac{-2(1+x)^{2}}{(1+x+y)}\right]_{0}^{\infty}=2(1+x)
$$

Since $E(1+x+Y \mid x)=1+x+E(Y \mid x), E(Y \mid x)=1+x$.
2.3.7. Suppose X_{1} and X_{2} are discrete random variables which have the joint $\operatorname{pmf} p\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}\right) / 24$, $\left(x_{1}, x_{2}\right)=(1,1),(1,2),(2,1),(2,2)$, zero elsewhere. Find the conditional mean $E\left(X_{2} \mid x_{1}\right)$, when $x_{1}=1$.

Solution.

$$
E\left(X_{2} \mid x_{1}=1\right)=\sum_{x_{2} \in(1,2)} x_{2} p\left(1, x_{2}\right)=p(1,1)+2 p(2,1)=\frac{4}{24}+2 \frac{5}{24}=\frac{7}{12}
$$

2.3.8. Let X and Y have the joint pdf $f(x, y)=2 \exp \{-(x+y)\}, 0<x<y<\infty$, zero elsewhere. Find the conditional mean $E(Y \mid x)$ of Y, given $X=x$.

Solution.

$$
f(x)=\int_{x}^{\infty} 2 \exp \{-(x+y)\} d y=2 e^{-2 x} \Rightarrow f_{2 \mid 1}(y \mid x)=\frac{f(x, y)}{f(x)}=e^{x-y} \quad 0<x<y<\infty
$$

Hence,

$$
E(Y \mid x)=\int_{x}^{\infty} y e^{x-y} d y=\int_{0}^{\infty}(x+t) e^{-t} d t=x+1, x>0
$$

2.3.10. Let X_{1} and X_{2} have the joint $\operatorname{pmf} p(x 1, x 2)$ described as follows:

$\left(x_{1}, x_{2}\right)$	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$	$(2,0)$	$(2,1)$
$p\left(x_{1}, x_{2}\right)$	$\frac{1}{18}$	$\frac{3}{18}$	$\frac{4}{18}$	$\frac{3}{18}$	$\frac{6}{18}$	$\frac{1}{18}$

and $p\left(x_{1}, x_{2}\right)$ is equal to zero elsewhere. Find the two marginal probability mass functions and the two conditional means.
Hint: Write the probabilities in a rectangular array.

Solution.

$$
\begin{gathered}
p\left(x_{1}\right)=\left\{\begin{array}{ll}
\frac{11}{18} & x_{2}=0 \\
\frac{7}{18} & x_{2}=1
\end{array}, \quad p\left(x_{2}\right)= \begin{cases}\frac{4}{18} & x_{1}=0 \\
\frac{7}{18} & x_{1}=1 \\
\frac{7}{18} & x_{1}=2\end{cases} \right. \\
E\left(X_{1} \mid X_{2}=x_{2}\right)=\left\{\begin{array}{ll}
\frac{16}{18} & x_{2}=0 \\
\frac{5}{18} & x_{2}=1
\end{array}, \quad E\left(X_{2} \mid X_{1}=x_{1}\right)= \begin{cases}\frac{3}{18} & x_{1}=0 \\
\frac{3}{18} & x_{1}=1 \\
\frac{1}{18} & x_{1}=2\end{cases} \right.
\end{gathered}
$$

2.3.11. Let us choose at random a point from the interval $(0,1)$ and let the random variable X_{1} be equal to the number that corresponds to that point. Then choose a point at random from the interval $\left(0, x_{1}\right)$, where x_{1} is the experimental value of X_{1}; and let the random variable X_{2} be equal to the number that corresponds to this point.
(a) Make assumptions about the marginal pdf $f_{1}\left(x_{1}\right)$ and the conditional pdf $f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)$.

Solution.

Assume that $X_{1} \sim U(0,1)$ and $X_{2} \mid X_{1}=x_{1} \sim U\left(0, x_{2}\right)$:

$$
f\left(x_{1}\right)=I\left(0<x_{1}<1\right), \quad f\left(x_{2} \mid x_{1}\right)=\frac{1}{x_{1}} I\left(0<x_{2}<x_{1}\right) .
$$

(b) Compute $P\left(X_{1}+X_{2} \geq 1\right)$.

Solution.

By (a), $f_{1,2}\left(x_{1}, x_{2}\right)=f\left(x_{2} \mid x_{1}\right) f\left(x_{1}\right)=1 / x_{1}, 0<x_{2}<x_{1}<1$. Hence,

$$
P\left(X_{1}+X_{2} \geq 1\right)=P\left(X_{2} \geq 1-X_{1}\right)=\int_{1 / 2}^{1} \int_{1-x_{1}}^{x_{1}} \frac{1}{x_{1}} d x_{2} d x_{1}=\int_{1 / 2}^{1}\left(2-\frac{1}{x_{1}}\right) d x_{1}=1-\log 2 .
$$

(c) Find the conditional mean $E\left(X_{1} \mid x_{2}\right)$

Solution.

Find $f\left(x_{2}\right)$ to get $f\left(x_{1} \mid x_{2}\right)$.

$$
f\left(x_{2}\right)=\int_{x_{2}}^{1} \frac{1}{x_{1}} d x_{1}=-\log x_{2}, 0<x_{2}<1 \Rightarrow f\left(x_{1} \mid x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f\left(x_{2}\right)}=-\frac{1}{x_{1} \log x_{2}}, 0<x_{2}<x_{1}<1 .
$$

Hence,

$$
E\left(X_{1} \mid X_{2}=x_{2}\right)=\int_{x_{2}}^{1}-\frac{1}{\log x_{2}} d x_{1}=\frac{1-x_{2}}{\log \left(1 / x_{2}\right)}, 0<x_{2}<1 .
$$

2.3.12. Let $f(x)$ and $F(x)$ denote, respectively, the pdf and the cdf of the random variable X. The conditional pdf of X, given $X>x_{0}, x_{0}$ a fixed number, is defined by $f\left(x \mid X>x_{0}\right)=f(x) /\left[1-F\left(x_{0}\right)\right], x_{0}<x$, zero elsewhere. This kind of conditional pdf finds application in a problem of time until death, given survival until time x_{0}.
(a) Show that $f\left(x \mid X>x_{0}\right)$ is a pdf.

Solution.

Since $f(x)>0$ and $0<F(x)<1, f\left(x \mid X>x_{0}\right)=f(x) /\left[1-F\left(x_{0}\right)\right]>0$. Also,

$$
\int_{x_{0}}^{\infty} f\left(x \mid X>x_{0}\right) d x=\int_{x_{0}}^{\infty} \frac{f(x)}{\left[1-F\left(x_{0}\right)\right]} d x=\frac{1}{\left[1-F\left(x_{0}\right)\right]}[F(x)]_{x_{0}}^{\infty}=1 \quad \text { since } F(\infty)=1 .
$$

(b) Let $f(x)=e^{-x}, 0<x<\infty$, and zero elsewhere. Compute $P(X>2 \mid X>1)$.

Solution.

Since $F(x)=1-e^{-x}, x>0, f(x \mid X>1)=f(x) /[1-F(1)]=e^{-x+1}$. Hence,

$$
P(X>2 \mid X>1)=\int_{2}^{\infty} f(x \mid X>1) d x=\int_{2}^{\infty} e^{-x+1} d x=\left[-e^{-x+1}\right]_{2}^{\infty}=e^{-1}
$$

2.4 Independent Random Variables

2.4.1. Show that the random variables X_{1} and X_{2} with joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}12 x_{1} x_{2}\left(1-x_{2}\right) & 0<x_{1}<1,0<x_{2}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

are independent.

Solution.

The support is rectangular (a product space). And $f\left(x_{1}, x_{2}\right)$ can be written as a product of a nonnegative function of x_{1} and a nonnegative function of $x_{2}: f\left(x_{1}, x_{2}\right) \equiv g\left(x_{1}\right) h\left(x_{2}\right)$, where $g\left(x_{1}\right)=12 x_{1} I\left(0<x_{1}<1\right)$ and $h\left(x_{2}\right)=x_{2}\left(1-x_{2}\right) I\left(0<x_{2}<1\right)$. Thus, X_{1} and X_{2} are independent.

Another solution is $f\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)$, where $f\left(x_{1}\right)=2 x_{1}$ and $f\left(x_{2}\right)=6 x_{2}\left(1-x_{2}\right)$ are marginal pdfs of X_{1} and X_{2}.
2.4.2. If the random variables X_{1} and X_{2} have the joint pdf $f\left(x_{1}, x_{2}\right)=2 e^{-x_{1}-x_{2}}, 0<x_{1}<x_{2}, 0<x_{2}<\infty$, zero elsewhere, show that X_{1} and X_{2} are dependent.

Solution.

Although the joint pdf can be expressed by a product of two nonnegative functions of x_{1} and x_{2}, respectively, $0<x_{1}<x_{2}<\infty$ is not a product space, which implies that X_{1} and X_{2} are dependent.
2.4.3. Let $p\left(x_{1}, x_{2}\right)=\frac{1}{16}, x_{1}=1,2,3,4$, and $x_{2}=1,2,3,4$, zero elsewhere, be the joint pmf of X_{1} and X_{2}. Show that X_{1} and X_{2} are independent.

Solution.

The marginal pdfs of X_{1} and X_{2} are $p\left(x_{1}\right)=p\left(x_{2}\right)=1 / 4$. So $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$ and the space is rectangular, which gives us X_{1} and X_{2} are independent.
2.4.4. Find $P\left(0<X_{1}<\frac{1}{3}, 0<X_{2}<\frac{1}{3}\right)$ if the random variables X_{1} and X_{2} have the joint pdf $f\left(x_{1}, x_{2}\right)=$ $4 x_{1}\left(1-x_{2}\right), 0<x_{1}<1,0<x_{2}<1$, zero elsewhere.

Solution.

Since $f\left(x_{1}\right)=2 x_{1}, 0<x_{1}<1$ and $f\left(x_{2}\right)=2\left(1-x_{2}\right), 0<x_{2}<1$ and X_{1} and X_{2} are independent,

$$
\begin{aligned}
P\left(0<X_{1}<\frac{1}{3}, 0<X_{2}<\frac{1}{3}\right) & =P\left(0<X_{1}<\frac{1}{3}\right) P\left(0<X_{2}<\frac{1}{3}\right) \\
& =\left(\int_{0}^{1 / 3} 2 x_{1} d x_{1}\right)\left(\int_{0}^{1 / 3} 2\left(1-x_{2}\right) d x_{2}\right) \\
& =\left(\frac{1}{9}\right)\left(\frac{5}{9}\right)=\frac{5}{81} .
\end{aligned}
$$

2.4.5. Find the probability of the union of the events $a<X_{1}<b,-\infty<X_{2}<\infty$, and $-\infty<X_{1}<\infty$, $c<X_{2}<d$ if X_{1} and X_{2} are two independent variables with $P\left(a<X_{1}<b\right)=\frac{2}{3}$ and $P\left(c<X_{2}<d\right)=\frac{5}{8}$.

Solution.

$$
\begin{aligned}
& P\left(\left\{a<X_{1}<b, \infty<X_{2}<\infty\right\} \cup\left\{-\infty<X_{1}<\infty, c<X_{2}<d\right\}\right) \\
& =P\left(\left\{a<X_{1}<b\right\} \cup\left\{c<X_{2}<d\right\}\right) \\
& =P\left(a<X_{1}<b\right)+P\left(c<X_{2}<d\right)-P\left(\left\{a<X_{1}<b\right\} \cap\left\{c<X_{2}<d\right\}\right) \\
& =P\left(a<X_{1}<b\right)+P\left(c<X_{2}<d\right)-P\left(a<X_{1}<b\right) P\left(c<X_{2}<d\right) \\
& =\frac{2}{3}+\frac{5}{8}-\frac{2}{3}\left(\frac{5}{8}\right)=\frac{7}{8} .
\end{aligned}
$$

2.4.8. Let X and Y have the joint pdf $f(x, y)=3 x, 0<y<x<1$, zero elsewhere. Are X and Y independent? If not, find $E(X \mid y)$.

Solution.

X and Y are not independent because the support $0<y<x<1$ is not rectangular (not a product space). So find $f(y)$ first: $f(y)=\int_{y}^{1} 3 x d x=3\left(1-y^{2}\right) / 2,0<y<1$, zero elsewhere. Hence

$$
E(X \mid y)=\int_{-\infty}^{\infty} x \frac{f(x, y)}{f(y)} d x=\int_{y}^{1} \frac{2 x^{2}}{\left(1-y^{2}\right)} d x=\frac{2\left(1-y^{3}\right)}{3\left(1-y^{2}\right)}=\frac{2\left(1+y+y^{2}\right)}{3(1+y)}, 0<y<1
$$

2.4.10. Let X and Y be random variables with the space consisting of the four points $(0,0),(1,1),(1,0)$, $(1,-1)$. Assign positive probabilities to these four points so that the correlation coefficient is equal to zero. Are X and Y independent?

Solution.

Assume the uniform distribution as shown below:

x_{1}, x_{2}	-1	0	1	$p_{X_{1}}\left(x_{1}\right)$
0	0	$1 / 4$	0	$1 / 4$
1	$1 / 4$	$1 / 4$	$1 / 4$	$3 / 4$
$p_{X_{2}}\left(x_{2}\right)$	$1 / 4$	$1 / 2$	$1 / 4$	

Then, correlation coefficient $\rho=0$ because

$$
E(X)=3 / 4, \quad E(Y)=0, \quad E(X Y)=-1 / 4+1 / 4=0 \Rightarrow E(X Y)-E(X) E(Y)=0
$$

However, $P\left(X_{1}=X_{2}=1\right)=1 / 4 \neq 3 / 16=p_{X_{1}}(1) p_{X_{2}}(1)$, meaning that X and Y are not independent.
2.4.11. Two line segments, each of length two units, are placed along the x-axis. The midpoint of the first is between $x=0$ and $x=14$ and that of the second is between $x=6$ and $x=20$. Assuming independence and uniform distributions for these midpoints, find the probability that the line segments overlap.

Solution.

Since $X_{1} \sim U(0,14)$ and $X_{2} \sim U(6,20)$, the joint pdf of X_{1} and X_{2} is $f\left(x_{1}, x_{2}\right)=1 / 14^{2}$. The desired probability is

$$
P\left(X_{1} \geq X_{2}\right)=\int_{6}^{14} \int_{6}^{x_{1}} \frac{1}{14^{2}} d x_{2} d x_{1}=\left.\frac{\left(x_{1}-6\right)^{2}}{2\left(14^{2}\right)}\right|_{6} ^{14}=\frac{8}{49}
$$

2.4.12. Cast a fair die and let $X=0$ if 1,2 , or 3 spots appear, let $X=1$ if 4 or 5 spots appear, and let $X=2$ if 6 spots appear. Do this two independent times, obtaining X_{1} and X_{2}. Calculate $P\left(\left|X_{1}-X_{2}\right|=1\right)$.

Solution.

$\left|X_{1}-X_{2}\right|=1$ when $\left(X_{1}, X_{2}\right)=(0,1),(1,0),(1,2),(2,1)$ with probabilities of $1 / 6,1 / 6,1 / 18$, and $1 / 18$, respectively. Hence the desired probability is $2(1 / 6+1 / 18)=4 / 9$.
2.4.13. For X_{1} and X_{2} in Example 2.4.6, show that the mgf of $Y=X_{1}+X_{2}$ is $e^{2 t} /\left(2-e^{t}\right)^{2}, t<\log 2$, and then compute the mean and variance of Y.

Solution.

Let $t=t_{1}=t_{2}$ then

$$
M_{Y}(t)=M_{X_{1}, X_{2}}(t, t)=\left(\frac{e^{t}}{2-e^{t}}\right)^{2}=\frac{e^{2 t}}{\left(2-e^{t}\right)^{2}}, \quad t<\log 2
$$

Let $\psi(t)=\log M_{Y}(t)=2 t-2 \log \left(2-e^{t}\right)$. Then

$$
\begin{aligned}
& E(Y)=\psi^{\prime}(0)=2+\left.\frac{2 e^{t}}{2-e^{t}}\right|_{t=0}=4, \\
& \operatorname{Var}(Y)=\psi^{\prime \prime}(0)=\left.\frac{4 e^{t}}{\left(2-e^{t}\right)^{2}}\right|_{t=0}=4 .
\end{aligned}
$$

2.5. The Correlation Coefficient

2.5.1. Let the random variables X and Y have the joint pmf
(a) $p(x, y)=\frac{1}{3},(x, y)=(0,0),(1,1),(2,2)$, zero elsewhere.
(b) $p(x, y)=\frac{1}{3},(x, y)=(0,2),(1,1),(2,0)$, zero elsewhere.
(c) $p(x, y)=\frac{1}{3},(x, y)=(0,0),(1,1),(2,0)$, zero elsewhere.

In each case compute the correlation coefficient of X and Y.

Solution.

For (a) and (b), the scatter plots clearly show that $\rho=1$ and $\rho=-1$, respectively.
For (c), since $E(X)=1, E(Y)=\frac{1}{3}$, and $E(X Y)=\frac{1}{3}, \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0$. Thus, $\rho=0$.
2.5.3. Let $f(x, y)=2,0<x<y, 0<y<1$, zero elsewhere, be the joint pdf of X and Y. Show that the conditional means are, respectively, $(1+x) / 2,0<x<1$, and $y / 2,0<y<1$. Show that the correlation coefficient of X and Y is $\rho=\frac{1}{2}$.

Solution.

Find the marginal pdfs of X and Y first.

$$
f(x)=\int_{x}^{1} 2 d y=2(1-x), 0<x<1, \quad f(y)=\int_{0}^{y} 2 d x=2 y, 0<y<1
$$

Hence,

$$
\begin{aligned}
& E(Y \mid X=x)=\int_{-\infty}^{\infty} y f(y \mid x) d y=\int_{-\infty}^{\infty} y \frac{f(x, y)}{f(x)} d y=\int_{x}^{1} \frac{y}{1-x} d y=\frac{1+x}{2}, \quad 0<x<1 \\
& E(X \mid Y=y)=\int_{-\infty}^{\infty} x f(x \mid y) d y=\int_{-\infty}^{\infty} x \frac{f(x, y)}{f(y)} d y=\int_{0}^{y} \frac{x}{y} d y=\frac{y}{2}, \quad 0<y<1
\end{aligned}
$$

2.5.4. Show that the variance of the conditional distribution of Y, given $X=x$, in Exercise 2.5.3, is $(1-x)^{2} / 12,0<x<1$, and that the variance of the conditional distribution of X, given $Y=y$, is $y^{2} / 12$, $0<y<1$.

Solution.

$$
\begin{aligned}
& E\left(Y^{2} \mid X=x\right)=\int_{x}^{1} \frac{y^{2}}{1-x} d y=\frac{1+x+x^{2}}{3}, \quad 0<x<1 \\
& E\left(X^{2} \mid Y=y\right)=\int_{0}^{y} \frac{x^{2}}{y} d y=\frac{y^{2}}{3}, \quad 0<y<1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \operatorname{Var}(Y \mid X=x)=E\left(Y^{2} \mid X=x\right)-[E(Y \mid X=x)]^{2}=\frac{1+x+x^{2}}{3}-\frac{(1+x)^{2}}{4}=\frac{(1-x)^{2}}{12}, \quad 0<x<1 \\
& \operatorname{Var}(X \mid Y=y)=E\left(X^{2} \mid Y=y\right)-[E(X \mid Y=y)]^{2}=\frac{y^{2}}{3}-\frac{y^{2}}{4}=\frac{y^{2}}{12}, \quad 0<y<1
\end{aligned}
$$

2.5.5. Verify the results of equations $(2.5 .11)$ of this section.

Solution. See Exercise 2.5 .8 because using $\psi\left(t_{1}, t_{2}\right)$ is easier to compute them.
2.5.6. Let X and Y have the joint pdf $f(x, y)=1,-x<y<x, 0<x<1$, zero elsewhere. Show that, on the set of positive probability density, the graph of $E(Y \mid x)$ is a straight line, whereas that of $E(X \mid y)$ is not a straight line.

Solution.

Find the marginal pdfs of X and Y first.

$$
f(x)=\int_{-x}^{x} d y=2 x, 0<x<1, \quad f(y)=\left\{\begin{array}{ll}
\int_{y}^{1} d x=1-y & 0<y<1 \\
\int_{0}^{1} d x=1 & -1<y \leq 0
\end{array} .\right.
$$

Hence,

$$
\begin{aligned}
& E(Y \mid x)=\int_{-\infty}^{\infty} y f(y \mid x) d y=\int_{-\infty}^{\infty} y \frac{f(x, y)}{f(x)} d y=\int_{-x}^{x} \frac{y}{2 x} d y=0, \quad 0<x<1, \\
& E(X \mid y)=\int_{-\infty}^{\infty} x f(x \mid y) d y=\int_{-\infty}^{\infty} x \frac{f(x, y)}{f(y)} d y= \begin{cases}\int_{y}^{1} \frac{x}{1-y} d y=\frac{1+y}{2} & 0<y<1 \\
\int_{0}^{1} x d y=\frac{1}{2} & -1<y \leq 0,\end{cases}
\end{aligned}
$$

which means that the graph of $E(Y \mid x)$ is a straight line, whereas that of $E(X \mid y)$ is not a straight line.
2.5.8. Let $\psi\left(t_{1}, t_{2}\right)=\log M\left(t_{1}, t_{2}\right)$, where $M\left(t_{1}, t_{2}\right)$ is the mgf of X and Y. Show that

$$
\frac{\partial \psi(0,0)}{\partial t_{i}}, \frac{\partial^{2} \psi(0,0)}{\partial t_{i}^{2}}, i=1,2,
$$

and

$$
\frac{\partial^{2} \psi(0,0)}{\partial t_{1} t_{2}}
$$

yield the means, the variances, and the covariance of the two random variables. Use this result to find the means, the variances, and the covariance of X and Y of Example 2.5.6.

Solution.

Note that $M(0,0)=E(1)=1$. When $i=1$,

$$
\begin{aligned}
\frac{\partial \psi(0,0)}{\partial t_{1}} & =\frac{\partial M(0,0) / \partial t_{1}}{M(0,0)}=\int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x, y) d y d x=\int_{-\infty}^{\infty} x f(x) d x=E(X), \\
\frac{\partial^{2} \psi(0,0)}{\partial t_{1}^{2}} & =\frac{M(0,0) \partial^{2} M(0,0) / \partial t_{1}^{2}-\left[\partial M(0,0) / \partial t_{1}\right]^{2}}{M(0,0)^{2}}=E\left(X^{2}\right)-[E(X)]^{2}=\operatorname{Var}(X) .
\end{aligned}
$$

Same for $i=2$. And

$$
\begin{aligned}
\frac{\partial^{2} \psi(0,0)}{\partial t_{1} t_{2}} & =\frac{\partial}{\partial t_{2}} \frac{\partial M(0,0) / \partial t_{1}}{M(0,0)} \\
& =\frac{\left[\partial^{2} M(0,0) / \partial t_{1} t_{2}\right] M(0,0)-\left[\partial M(0,0) / \partial t_{1}\right]\left[\partial M(0,0) / \partial t_{2}\right]}{M(0,0)^{2}} \\
& =E(X Y)-E(X) E(Y)=\operatorname{Cov}(X, Y) .
\end{aligned}
$$

Hence, for Example 2.5.6,

$$
\begin{aligned}
\psi\left(t_{1}, t_{2}\right) & =\log M\left(t_{1}, t_{2}\right)=-\log \left(1-t_{1}-t_{2}\right)-\log \left(1-t_{2}\right) \\
\frac{\partial \psi\left(t_{1}, t_{2}\right)}{\partial t_{1}} & =\frac{1}{1-t_{1}-t_{2}}, \quad \frac{\partial \psi\left(t_{1}, t_{2}\right)}{\partial t_{2}}=\frac{1}{1-t_{1}-t_{2}}+\frac{1}{1-t_{2}} \\
\frac{\partial^{2} \psi\left(t_{1}, t_{2}\right)}{\partial t_{1}^{2}} & =\frac{1}{\left(1-t_{1}-t_{2}\right)^{2}}, \quad \frac{\partial^{2} \psi\left(t_{1}, t_{2}\right)}{\partial t_{2}^{2}}=\frac{1}{\left(1-t_{1}-t_{2}\right)^{2}}+\frac{1}{\left(1-t_{2}\right)^{2}} \\
\frac{\partial^{2} \psi\left(t_{1}, t_{2}\right)}{\partial t_{1} t_{2}} & =\frac{1}{\left(1-t_{1}-t_{2}\right)^{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\mu_{1}=E(X)=\frac{\partial \psi(0,0)}{\partial t_{1}}=1, \quad \mu_{2}=E(Y)=\frac{\partial \psi(0,0)}{\partial t_{2}}=2 \\
\sigma_{1}^{2}=\operatorname{Var}(X)=\frac{\partial^{2} \psi(0,0)}{\partial t_{1}^{2}}=1, \quad \sigma_{2}^{2}=\operatorname{Var}(Y)=\frac{\partial^{2} \psi(0,0)}{\partial t_{2}^{2}}=2 \\
E\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]=\operatorname{Cov}(X, Y)=\frac{\partial^{2} \psi(0,0)}{\partial t_{1} t_{2}}=1
\end{gathered}
$$

2.5.9. Let X and Y have the joint $\operatorname{pmf} p(x, y)=\frac{1}{7},(0,0),(1,0),(0,1),(1,1),(2,1),(1,2),(2,2)$, zero elsewhere. Find the correlation coefficient ρ.

Solution.

$$
\begin{aligned}
& E(X)=E(Y)=\frac{1+1+2+1+2}{7}=1, \quad E\left(X^{2}\right)=E\left(Y^{2}\right)=\frac{1+1+4+1+4}{7}=\frac{11}{7} \\
& \Rightarrow \sigma_{X}^{2}=\sigma_{Y}^{2}=\frac{11}{7}-1=\frac{4}{7}, \quad E(X Y)=\frac{1+2+2+4}{7}=\frac{9}{7}
\end{aligned}
$$

Hence,

$$
\rho=\frac{E(X Y)-E(X) E(Y)}{\sigma_{X} \sigma_{Y}}=\frac{2 / 7}{4 / 7}=\frac{1}{2} .
$$

2.5.11. Let $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$ be the common variance of X_{1} and X_{2} and let ρ be the correlation coefficient of X_{1} and X_{2}. Show for $k>0$ that

$$
P\left[\left|\left(X_{1}-\mu_{1}\right)+\left(X_{2}-\mu_{2}\right)\right| \geq k \sigma\right] \leq \frac{2(1+\rho)}{k^{2}}
$$

Solution.

$$
\begin{aligned}
P\left[\left|\left(X_{1}-\mu_{1}\right)+\left(X_{2}-\mu_{2}\right)\right| \geq k \sigma\right]= & P\left[\left|\left(X_{1}-\mu_{1}\right)+\left(X_{2}-\mu_{2}\right)\right|^{2} \geq k^{2} \sigma^{2}\right] \\
= & P\left[\left(X_{1}-\mu_{1}\right)^{2}+\left(X_{2}-\mu_{2}\right)^{2}+2\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) \geq k^{2} \sigma^{2}\right] \\
\leq & P\left[\left(X_{1}-\mu_{1}\right)^{2} \geq k^{2} \sigma^{2}\right]+P\left[\left(X_{2}-\mu_{2}\right)^{2} \geq k^{2} \sigma^{2}\right] \\
& +P\left[2\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) \geq k^{2} \sigma^{2}\right] \\
= & P\left(\left|X_{1}-\mu_{1}\right| \geq k \sigma\right)+P\left(\left|X_{2}-\mu_{2}\right| \geq k \sigma\right) \\
& +P\left[2\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) \geq k^{2} \sigma^{2}\right] \\
\leq & \frac{1}{k^{2}}+\frac{1}{k^{2}}+\frac{2 E\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)}{k^{2} \sigma^{2}} \\
= & \frac{2(1+\rho)}{k^{2}} \quad \text { since } \frac{E\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)}{\sigma^{2}}=\rho .
\end{aligned}
$$

2.6. Extension to Several Random Variables

2.6.1. Let X, Y, Z have joint pdf $f(x, y, z)=2(x+y+z) / 3,0<x<1,0<y<1,0<z<1$, zero elsewhere.
(a) Find the marginal probability density functions of X, Y, and Z.

Solution.

$$
f_{X}(x)=\int_{0}^{1} \int_{0}^{1} \frac{2(x+y+z)}{3} d z d y=\cdots=\frac{2(x+1)}{3}
$$

Similarly,

$$
f_{Y}(y)=\frac{2(y+1)}{3}, \quad f_{Z}(z)=\frac{2(z+1)}{3}
$$

(b) Compute $P\left(0<X<\frac{1}{2}, 0<Y<\frac{1}{2}, 0<Z<\frac{1}{2}\right)$ and $P\left(0<X<\frac{1}{2}\right)=P\left(0<Y<\frac{1}{2}\right)=P\left(0<Z<\frac{1}{2}\right)$.

Solution. Skipped. We can solve part (c) without computing them.
(c) Are X, Y, and Z independent?

Solution. No; $f(x, y, x) \neq f(x) f(y) f(z)$ although the support is a product space.
(d) Compute $E\left(X^{2} Y Z+3 X Y^{4} Z^{2}\right)$.

Solution. Skipped.
(e) Determine the cdf of X, Y, and Z.

Solution.

$$
F_{X}(x)= \begin{cases}0 & x \leq 0 \\ \int_{0}^{x} \frac{2(t+1)}{3} d t=\frac{(x+1)^{2}-1}{3}=\frac{x^{2}+2 x}{3} & 0<x<1 \\ 1 & x \geq 1\end{cases}
$$

Similarly,

$$
F_{Y}(y)= \begin{cases}0 & y \leq 0 \\
\frac{y^{2}+2 y}{3} & 0<y<1, \quad F_{Z}(z)=\left\{\begin{array}{ll}
0 & z \leq 0 \\
1 & y \geq 1
\end{array} \frac{z^{2}+2 z}{3}\right. \\
1 & 0<z<1\end{cases}
$$

(f) Find the conditional distribution of X and Y, given $Z=z$, and evaluate $E(X+Y \mid z)$.

Solution.

$$
f(x, y \mid z)=\frac{f(x, y, z)}{f(z)}=\frac{x+y+z}{z+1}, 0<x<1,0<y<1
$$

Hence,

$$
\begin{aligned}
E(X+Y \mid z) & =\int_{0}^{1} \int_{0}^{1}(x+y) \frac{x+y+z}{z+1} d y d x \\
& =\int_{0}^{1} \int_{0}^{1} \frac{(x+y)^{2}+z(x+y)}{z+1} d y d x \\
& =\frac{1}{z+1} \int_{0}^{1}\left[\frac{(x+y)^{3}}{3}+\frac{z(x+y)^{2}}{2}\right]_{y=0}^{y=1} d x \\
& =\frac{1}{z+1} \int_{0}^{1}\left[\frac{(x+1)^{3}}{3}+\frac{z(x+1)^{2}}{2}-\frac{x^{3}}{3}-\frac{z x^{2}}{2}\right] d x \\
& =\frac{1}{z+1}\left[\frac{(x+1)^{4}}{12}+\frac{z(x+1)^{3}}{6}-\frac{x^{4}}{12}-\frac{z x^{3}}{6}\right]_{0}^{1} \\
& =\frac{z+7 / 6}{z+1}=\frac{6 z+7}{6(z+1)}, 0<z<1
\end{aligned}
$$

(g) Determine the conditional distribution of X, given $Y=y$ and $Z=z$, and compute $E(X \mid y, z)$.

Solution.

$$
\begin{aligned}
f(y, z) & =\int_{0}^{1} \frac{2(x+y+z)}{3} d x=\frac{2 y+2 z+1}{3} \\
f(x \mid y, z) & =\frac{f(x, y, z)}{f(y, z)}=\frac{2(x+y+z)}{2 y+2 z+1}
\end{aligned}
$$

Hence,

$$
E(X \mid y, z)=\int_{0}^{1} x \frac{2(x+y+z)}{2 y+2 z+1} d x=\int_{0}^{1} \frac{2 x^{2}+2 x(y+z)}{2 y+2 z+1}=\cdots=\frac{3 y+3 z+2}{3(2 y+2 z+1)}, \quad 0<y, z<1
$$

2.6.2. Let $f\left(x_{1}, x_{2}, x_{3}\right)=\exp \left[-\left(x_{1}+x_{2}+x_{3}\right)\right], 0<x_{1}<\infty, 0<x_{2}<\infty, 0<x_{3}<\infty$, zero elsewhere, be the joint pdf of X_{1}, X_{2}, X_{3}.
(a) Compute $P\left(X_{1}<X_{2}<X_{3}\right)$ and $P\left(X_{1}=X_{2}<X_{3}\right)$.

Solution.

$$
\begin{aligned}
P\left(X_{1}<X_{2}<X_{3}\right) & =\int_{0}^{\infty} \int_{0}^{x_{3}} \int_{0}^{x_{2}} e^{-x_{1}-x_{2}-x_{3}} d x_{1} d x_{2} d x_{3} \\
& =\int_{0}^{\infty} \int_{0}^{x_{3}}\left[e^{-x_{2}-x_{3}}-e^{-2 x_{2}-x_{3}}\right] d x_{2} d x_{3} \\
& =\int_{0}^{\infty}\left[\left(e^{-x_{3}}-e^{-2 x_{3}}\right)-\left(e^{-x_{3}} / 2-e^{-3 x_{3}} / 2\right)\right] d x_{3} \\
& =(1-1 / 2)-(1 / 2-1 / 6)=\frac{1}{6} \\
P\left(X_{1}=X_{2}<X_{3}\right) & =\int_{0}^{\infty} \int_{0}^{x_{3}} \int_{x_{2}}^{x_{2}} e^{-x_{1}-x_{2}-x_{3}} d x_{1} d x_{2} d x_{3}=0
\end{aligned}
$$

(b) Determine the joint mgf of X_{1}, X_{2}, and X_{3}. Are these random variables independent?

Solution.

$$
\begin{aligned}
M\left(t_{1}, t_{2}, t_{3}\right) & =\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(1-t_{1}\right) x_{1}} e^{-\left(1-t_{2}\right) x_{2}} e^{-\left(1-t_{3}\right) x_{3}} d x_{1} d x_{2} d x_{3} \\
& =\int_{0}^{\infty} e^{-\left(1-t_{1}\right) x_{1}} d x_{1} \int_{0}^{\infty} e^{-\left(1-t_{2}\right) x_{2}} d x_{2} \int_{0}^{\infty} e^{-\left(1-t_{3}\right) x_{3}} d x_{3} \\
& =\frac{1}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)}, t_{1}<1, t_{2}<1, t_{3}<1 \\
& =M_{X_{1}}\left(t_{1}\right) M_{X_{2}}\left(t_{2}\right) M_{X_{3}}\left(t_{3}\right)
\end{aligned}
$$

which clearly shows that these three random varialbes are independent.
2.6.7. Prove Corollary 2.6.1: Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid random variables with the common mgf $M(t)$, for $-h<t<h$, where $h>0$. Let $T=\sum_{i=1}^{n} X_{i}$. Then T has the mgf given by

$$
M_{T}(t)=[M(t)]^{n}, \quad-h<t<h .
$$

Solution.

$$
\begin{aligned}
M_{T}(t)=E\left[e^{\sum_{i=1}^{n} X_{i} t}\right] & =\prod_{i=1}^{n} E\left(e^{X_{i} t}\right) \quad\left(X_{i}^{\prime} s \text { are independent }\right) \\
& =\left[E\left(e^{X t}\right)\right]^{n} \quad\left(X_{i}^{\prime} s \text { are identical }\right) \\
& =\left[M_{X}(t)\right]^{n}
\end{aligned}
$$

2.6.9. Let X_{1}, X_{2}, X_{3} be iid with common pdf $f(x)=\exp (-x), 0<x<\infty$, zero elsewhere. Evaluate:
(a) $P\left(X_{1}<X_{2} \mid X_{1}<2 X_{2}\right)$.

Solution.

$$
P\left(X_{1}<X_{2} \mid X_{1}<2 X_{2}\right)=\frac{P\left(X_{1}<X_{2}, X_{1}<2 X_{2}\right)}{P\left(X_{1}<2 X_{2}\right)}=\frac{P\left(X_{1}<X_{2}\right)}{P\left(X_{1}<2 X_{2}\right)}
$$

For the numerator,

$$
P\left(X_{1}<X_{2}\right)=\int_{0}^{\infty} \int_{x_{1}}^{\infty} e^{-x_{1}-x_{2}} d x_{2} d x_{1}=\int_{0}^{\infty} e^{-2 x_{1}} d x_{2}=\frac{1}{2}
$$

For the denominator,

$$
P\left(X_{1}<2 X_{2}\right)=\int_{0}^{\infty} \int_{x_{1} / 2}^{\infty} e^{-x_{1}-x_{2}} d x_{2} d x_{1}=\int_{0}^{\infty} e^{-3 x_{1} / 2} d x_{2}=\frac{2}{3}
$$

Thus, $P\left(X_{1}<X_{2} \mid X_{1}<2 X_{2}\right)=\frac{1 / 2}{2 / 3}=\frac{3}{4}$.
(b) $P\left(X_{1}<X_{2}<X_{3} \mid X_{3}<1\right)$.

Solution.

$$
P\left(X_{1}<X_{2}<X_{3} \mid X_{3}<1\right)=\frac{P\left(X_{1}<X_{2}<X_{3}<1\right)}{P\left(X_{3}<1\right)}
$$

For the numerator,

$$
\begin{aligned}
P\left(X_{1}<X_{2}<X_{3}<1\right) & =\int_{0}^{1} \int_{0}^{x_{3}} \int_{0}^{x_{2}} e^{-x_{1}-x_{2}-x_{3}} d x_{1} d x_{2} d x_{3} \\
& =\int_{0}^{1} \int_{0}^{x_{3}}\left[e^{-x_{2}-x_{3}}-e^{-2 x_{2}-x_{3}}\right] d x_{2} d x_{3} \\
& =\int_{0}^{1}\left[\left(e^{-x_{3}}-e^{-2 x_{3}}\right)-\left(e^{-x_{3}} / 2-e^{-3 x_{3}} / 2\right)\right] d x_{3} \\
& \left.=\int_{0}^{1}\left[e^{-x_{3}} / 2-e^{-2 x_{3}}+e^{-3 x_{3}} / 2\right)\right] d x_{3} \\
& =\frac{1-e^{-1}}{2}-\frac{1-e^{-2}}{2}+\frac{1-e^{-3}}{6} \\
& =\frac{1-3 e^{-1}+3 e^{-2}-e^{-3}}{6}
\end{aligned}
$$

For the denominator,

$$
P\left(X_{3}<1\right)=\int_{0}^{1} e^{-x_{3}} d x_{3}=1-e^{-1}
$$

Hence

$$
P\left(X_{1}<X_{2}<X_{3} \mid X_{3}<1\right)=\frac{P\left(X_{1}<X_{2}<X_{3}<1\right)}{P\left(X_{3}<1\right)}=\frac{1-3 e^{-1}+3 e^{-2}-e^{-3}}{6\left(1-e^{-1}\right)} \approx 0.0666 .
$$

2.7. Transformations for Several Random Variables

Skipped because of a just extension from two random variables.

2.8. Linear Combinations of Random Variables

2.8.3. Let X_{1} and X_{2} be two independent random variables so that the variances of X_{1} and X_{2} are $\sigma_{1}^{2}=k$ and $\sigma_{2}^{2}=2$, respectively. Given that the variance of $Y=3 X_{2}-X_{1}$ is 25 , find k.

Solution.

$$
\begin{aligned}
\operatorname{Var}(Y) & =3^{2} \operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(X_{1}\right) \quad X_{1}, X_{2} \text { are independent } \\
& =9 \sigma_{2}^{2}+\sigma_{1}^{2}=18+k
\end{aligned}
$$

Hence, $\operatorname{Var}(Y)=25 \Rightarrow k=7$.
2.8.6. Determine the mean and variance of the sample mean $\mathrm{X}=5^{-1} \sum_{i=1}^{5} X_{i}$, where X_{1}, \ldots, X_{5} is a random sample from a distribution having pdf $f(x)=4 x^{3}, 0<x<1$, zero elsewhere.

Solution.

$$
E(X)=\int_{0}^{1} x\left(4 x^{3}\right) d x=\frac{4}{5}, \quad E\left(X^{2}\right)=\int_{0}^{1} x^{2}\left(4 x^{3}\right) d x=\frac{2}{3} \Rightarrow \operatorname{Var}(X)=\frac{2}{75}
$$

Hence,

$$
E(\bar{X})=E(X)=\frac{4}{5}=0.8, \quad \operatorname{Var}(\bar{X})=\frac{\operatorname{Var}(X)}{5}=\frac{2}{375} \approx 0.00533
$$

2.8.7. Let X and Y be random variables with $\mu_{1}=1, \mu_{2}=4, \sigma_{1}^{2}=4, \sigma_{2}^{2}=6, \rho=\frac{1}{2}$. Find the mean and variance of the random variable $Z=3 X-2 Y$.

Solution.

$$
\begin{aligned}
E(Z) & =3 E(X)-2 E(Y)=3 \mu_{1}-2 \mu_{2}=-5 \\
\operatorname{Var}(Z) & =3^{2} \operatorname{Var}(X)+2^{2} \operatorname{Var}(Y)-12 \operatorname{Cov}(X, Y) \\
& =9 \sigma_{1}^{2}+4 \sigma_{2}^{2}-12 \rho \sigma_{1} \sigma_{2} \\
& =60-12 \sqrt{6} \approx 30.6
\end{aligned}
$$

2.8.8. Let X and Y be independent random variables with means μ_{1}, μ_{2} and variances $\sigma_{1}^{2}, \sigma_{2}^{2}$. Determine the correlation coefficient of X and $Z=X-Y$ in terms of $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$.

Solution.

Since X and Y are independent,

$$
\begin{aligned}
\operatorname{Var}(Z) & =\operatorname{Var}(X)+\operatorname{Var}(Y)=\sigma_{1}^{2}+\sigma_{2}^{2} \\
\operatorname{Cov}(X, Z) & =\operatorname{Cov}(X, X-Y)=\operatorname{Var}(X)-\operatorname{Cov}(X, Y)=\sigma_{1}^{2}
\end{aligned}
$$

Hence, the correlation coefficient is

$$
\rho=\frac{\operatorname{Cov}(X, Z)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Z)}}=\frac{\sigma_{1}^{2}}{\sqrt{\sigma_{1}^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}=\frac{\sigma_{1}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}
$$

2.8.10. Determine the correlation coefficient of the random variables X and Y if $\operatorname{var}(X)=4, \operatorname{var}(Y)=2$, and $\operatorname{var}(X+2 Y)=15$.

Solution.

$$
15=\operatorname{Var}(X+2 Y)=\operatorname{Var}(X)+4 \operatorname{Var}(Y)+4 \operatorname{Cov}(X, Y)=4+4(2)+4 \rho \sqrt{4} \sqrt{2}=12+8 \sqrt{2} \rho
$$

Hence, $\rho=3 /(8 \sqrt{2}) \approx 0.265$.
2.8.11. Let X and Y be random variables with means μ_{1}, μ_{2}; variances $\sigma_{1}^{2}, \sigma_{2}^{2}$; and correlation coefficient ρ. Show that the correlation coefficient of $W=a X+b, a>0$, and $Z=c Y+d, c>0$, is ρ.

Solution.

$$
\operatorname{Var}(W)=a^{2} \operatorname{Var}(X)=a^{2} \sigma_{1}^{2}, \quad \operatorname{Var}(Z)=c^{2} \operatorname{Var}(Y)=c^{2} \sigma_{2}^{2}, \quad \operatorname{Cov}(W, Z)=a c \operatorname{Cov}(X, Y)=a c \rho \sigma_{1} \sigma_{2}
$$

Hence, $\operatorname{Corr}(W, Z)=\operatorname{Cov}(W, Z) /(\sqrt{\operatorname{Var}(W) \operatorname{Var}(Z)})=\rho$ because $a>0$ and $c>0$.
2.8.13. Let X_{1} and X_{2} be independent random variables with nonzero variances. Find the correlation coefficient of $Y=X_{1} X_{2}$ and X_{1} in terms of the means and variances of X_{1} and X_{2}.

Solution.

Let μ_{1}, μ_{2} and $\sigma_{1}^{2}, \sigma_{2}^{2}$ denote the means and the variances of X_{1} and X_{2}, respectively. Since the two r.v.s. are independent,

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}\left(X_{1} X_{2}\right) \\
& =E\left(X_{1}^{2} X_{2}^{2}\right)-E\left(X_{1} X_{2}\right)^{2} \\
& =E\left(X_{1}^{2}\right) E\left(X_{2}^{2}\right)-E\left(X_{1}\right)^{2} E\left(X_{2}\right)^{2} \\
& =\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)-\mu_{1}^{2} \mu_{2}^{2} \\
& =\mu_{1}^{2} \sigma_{2}^{2}+\sigma_{1}^{2} \mu_{2}^{2}+\sigma_{1}^{2} \sigma_{2}^{2} \\
\operatorname{Cov}\left(Y, X_{1}\right) & =\operatorname{Cov}\left(X_{1} X_{2}, X_{1}\right) \\
& =E\left(X_{1}^{2} X_{2}\right)-E\left(X_{1} X_{2}\right) E\left(X_{1}\right) \\
& =E\left(X_{1}^{2}\right) E\left(X_{2}\right)-E\left(X_{1}\right)^{2} E\left(X_{2}\right) \\
& =\left(\mu_{1}^{2}+\sigma_{1}^{2}\right) \mu_{2}-\mu_{1}^{2} \mu_{2} \\
& =\sigma_{1}^{2} \mu_{2}
\end{aligned}
$$

Hence,

$$
\rho=\frac{\operatorname{Cov}\left(Y, X_{1}\right)}{\sqrt{\operatorname{Var}(Y) \operatorname{Var}\left(X_{1}\right)}}=\frac{\sigma_{1}^{2} \mu_{2}}{\sqrt{\mu_{1}^{2} \sigma_{2}^{2}+\sigma_{1}^{2} \mu_{2}^{2}+\sigma_{1}^{2} \sigma_{2}^{2}}\left(\sigma_{1}\right)}=\frac{\sigma_{1} \mu_{2}}{\sqrt{\mu_{1}^{2} \sigma_{2}^{2}+\sigma_{1}^{2} \mu_{2}^{2}+\sigma_{1}^{2} \sigma_{2}^{2}}}
$$

2.8.15. Let X_{1}, X_{2}, and X_{3} be random variables with equal variances but with correlation coefficients $\rho_{12}=0.3, \rho_{13}=0.5$, and $\rho_{23}=0.2$. Find the correlation coefficient of the linear functions $Y=X_{1}+X_{2}$ and $Z=X_{2}+X_{3}$.

Solution.

Let σ^{2} denote the variance of X_{1}, X_{2}, and X_{3}. Then

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)=2 \sigma^{2}\left(1+\rho_{12}\right)=2.6 \sigma^{2}, \\
\operatorname{Var}(Z) & =\operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(X_{3}\right)+2 \operatorname{Cov}\left(X_{2}, X_{3}\right)=2 \sigma^{2}\left(1+\rho_{23}\right)=2.4 \sigma^{2}, \\
\operatorname{Cov}(Y, Z) & =\operatorname{Cov}\left(X_{1}+X_{2}, X_{2}+X_{3}\right)=\sigma^{2}\left(\rho_{12}+\rho_{13}+1+\rho_{23}\right)=2 \sigma^{2} .
\end{aligned}
$$

Therefore, the correlation coefficient, ρ, is

$$
\rho=\frac{\operatorname{Cov}(Y, Z)}{\sqrt{\operatorname{Var}(Y) \operatorname{Var}(Z)}}=\frac{2 \sigma^{2}}{\sqrt{2.6(2.4)} \sigma^{2}} \approx 0.801
$$

2.8.17. Let X and Y have the parameters $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$, and ρ. Show that the correlation coefficient of X and $\left[Y-\rho\left(\sigma_{2} / \sigma_{1}\right) X\right]$ is zero.

Solution.

$$
\operatorname{Cov}\left(X, Y-\rho\left(\sigma_{2} / \sigma_{1}\right) X\right)=\operatorname{Cov}(X, Y)-\rho\left(\sigma_{2} / \sigma_{1}\right) \operatorname{Var}(X)=\rho \sigma_{1} \sigma_{2}-\rho\left(\sigma_{2} / \sigma_{1}\right) \sigma_{1}^{2}=0
$$

