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Note

• Not all solutions are provided: exercises that are too simple or not very important to me are skipped.

• Texts in red are just attentions to me. Please ignore them.

2 Multivariate Distributions

2.1 Distributions of Two Random Variables

2.1.1. Let f(x1, x2) = 4x1x2, 0 < x1 < 1, 0 < x2 < 1, zero elsewhere, be the pdf of X1 and X2. Find
P (0 < X1 <

1
2 ,

1
4 < X2 < 1), P (X1 = X2), P (X1 < X2), and P (X1 ≤ X2).

Solution.

P

(
0 < X1 <

1

2
,
1

4
< X2 < 1

)
=

∫ 1

1/4

∫ 1/2

0

4x1x2dx1dx2 = · · · = 15

64

P (X1 = X2) = 0 since the support is a segment not area

P (X1 < X2) =

∫ 1

0

∫ x2

0

4x1x2dx1dx2 =

∫ 1

0

2x21x2|
x1=x2
x1=0 dx1dx2 =

∫ 1

0

2x32dx2 =
1

2
.

P (X1 ≤ X2) = P (X1 < X2) + P (X1 = X2) = P (X1 < X2) =
1

2
.

2.1.2. Let A1 = {(x, y) : x ≤ 2, y ≤ 4}, A2 = {(x, y) : x ≤ 2, y ≤ 1}, A3 = {(x, y) : x ≤ 0, y ≤ 4}, and
A4 = {(x, y) : x ≤ 0, y ≤ 1} be subsets of the space A of two random variables X and Y , which is the
entire two-dimensional plane. If P (A1) =

7
8 , P (A2) =

4
8 , P (A3) =

3
8 , and P (A4) =

2
8 , find P (A5), where

A5 = {(x, y) : 0 < x ≤ 2, 1 < y ≤ 4}.

Solution. P (A5) = P (A1)− P (A2)− P (A3) + P (A4) =
2
8 .

2.1.3. Let F (x, y) be the distribution function of X and Y . For all real constants a < b, c < d, show that

P (a < X ≤ b, c < Y ≤ d) = F (b, d)− F (b, c)− F (a, d) + F (a, c).

Solution.

P (a < X ≤ b, c < Y ≤ d) = P (X ≤ b, c < Y ≤ d)− P (X ≤ a, c < Y ≤ d)

= P (X ≤ b, Y ≤ d)− P (X ≤ b, Y ≤ c)− P (X ≤ a, Y ≤ d) + P (X ≤ a, Y ≤ c)

= F (b, d)− F (b, c)− F (a, d) + F (a, c).

2.1.7. Let f(x, y) = e−x−y, 0 < x < ∞, 0 < y < ∞, zero elsewhere, be the pdf of X and Y . Then if
Z = X + Y , compute P (Z ≤ 0), P (Z ≤ 6), and, more generally, P (Z ≤ z), for 0 < z <∞. What is the pdf
of Z.
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Solution.

Compute the general probability:

F (z) = P (Z ≤ z) = P (X + Y ≤ z) = P (Y ≤ −X + z)

=

∫ z

0

∫ z−x

0

e−x−ydydx =

∫ z

0

(e−x − e−z)dx = 1− e−z − ze−z.

Hence, P (Z ≤ 0) = 0, P (Z ≤ 6) = 1− 7e−6, and f(z) = F ′(z) = ze−z, 0 < z <∞, zero elsewhere.

2.1.8. Let X and Y have the pdf f(x, y) = 1, 0 < x < 1, 0 < y < 1, zero elsewhere. Find the cdf and pdf of
the product Z = XY .

Solution.

If z ≤ 0, then F (z) = P (Z ≤ z) = 0 because Z > 0.

F (z) = P (Z ≤ z) = P (Y ≤ z/X) =

∫ z

0

∫ 1

0

dydx+

∫ 1

z

∫ z/x

0

dydx = z − z log z, 0 < z < 1,

and one z ≥ 1. Hence, the pdf pf Z is

fZ(z) = F ′(z) = − log z, 0 < z < 1,

zero elsewhere.

2.1.11. Let X1 and X2 have the joint pdf f(x1, x2) = 15x21x2, 0 < x1 < x2 < 1, zero elsewhere. Find the
marginal pdfs and compute P (X1 +X2 ≤ 1).

Solution.

fX1
(x1) =

∫ 1

x1

15x21x2dx2 =
15x21(1− x21)

2
, 0 < x1 < 1,

fX2
(x2) =

∫ x2

0

15x21x2dx1 = 5x42, 0 < x2 < 1,

P (X1 +X2 ≤ 1) = 15

∫ 1/2

0

x21

(∫ 1−x1

x1

x2dx2

)
dx1 = · · · = 5

64
.

2.1.13. Let X1, X2 be two random variables with the joint pmf p(x1, x2) = (x1 +x2)/12, for x1 = 1, 2, x2 =
1, 2, zero elsewhere. Compute E(X1), E(X2

1 ), E(X2), E(X2
2 ), and E(X1X2). Is E(X1X2) = E(X1)E(X2)?

Find E(2X1 − 6X2
2 + 7X1X2).

Solution.

First, find the marginal pdfs:

pX1(x1) =

2∑
x2=1

x1 + x2
12

=
x1 + 1

12
+
x1 + 2

12
=

2x1 + 3

12
, pX2(x2) =

2x2 + 3

12
.

Hence

E(X1) =

2∑
x1=1

x1p(x1) = pX1
(1) + 2pX1

(2) =
5

12
+

14

12
=

19

12
,

E(X2
1 ) = pX1

(1) + 22pX1
(2) =

33

12
,

E(X2) = E(X1) =
19

12
, E(X2

2 ) = E(X2
1 ) =

33

12
.
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Also, use the joint mgf to obtain

E(X1X2) =
∑
x1x2

x1x2p(x1, x2) = p(1, 1) + 2p(2, 1) + 2p(1, 2) + 4p(2, 2) =
5

2
̸= E(X1)E(X2).

Therefore,

E(2X1 − 6X2
2 + 7X1X2) = 2

19

12
− 6

33

12
+ 7

5

2
=

25

6
.

2.1.15. Let X1, X2 be two random variables with joint pmf p(x1, x2) = (1/2)x1+x2 , for 1 ≤ xi < ∞,
i = 1, 2, where X1 and X2 are integers, zero elsewhere. Determine the joint mgf of X1, X2. Show that
M(t1, t2) =M(t1, 0)M(0, t2).

Solution.

p(x1) =

∞∑
x2=1

(1/2)x1+x2 =
(1/2)x1+1

1− 1/2
= (1/2)x1 , p(x1) = (1/2)x2

MX1(t) =

∞∑
x1=1

(et/2)x1 =
et/2

1− et/2
=

et

2− et
=MX2(t), t < log 2,

M(t1, t2) =

∞∑
x1=1

∞∑
x2=1

et1x1+t2x2(1/2)x1+x2 =

∞∑
x1=1

(et1/2)x1

∞∑
x2=1

(et2/2)x2

=MX1
(t1)MX2

(t2) =M(t1, 0)M(0, t2).

2.2 Transformations: Bivariate Random Variables

2.2.1. If p(x1, x2) = (23 )
x1+x2( 13 )

2−x1−x2 , (x1, x2) = (0, 0), (0, 1), (1, 0), (1, 1), zero elsewhere, is the joint pmf
of X1 and X2, find the joint pmf of Y1 = X1 −X2 and Y2 = X1 +X2.

Solution.

The support of (Y1, Y2) is (y1, y2) = (0, 0), (−1, 1), (1, 1), (0, 2). Since the one-to-one inverse functions are
x1 = (y1 + y2)/2 and x2 = (y2 − y1)/2,

pY1,Y2
(y1, y2) = p

(
y1 + y2

2
,
y2 − y1

2

)
=

(
2

3

)y1
(
1

3

)2−y1

,

zero outside the support.

2.2.5. Let X1 and X2 be continuous random variables with the joint pdf fX1,X2
(x1, x2), −∞ < xi < ∞,

i = 1, 2. Let Y1 = X1 +X2 and Y2 = X2.

(a) Find the joint pdf fY1,Y2
.

Solution.

The inverse functions are x1 = y1 − y2, x2 = y2 and then the Jacobian J = 1. Hence

fY1,Y2
(y1, y2) = fX1,X2

(y1 − y2, y2)|J | = fX1,X2
(y1 − y2, y2).

(b) Show that

fY1
(y1) =

∫ ∞

−∞
fX1,X2

(y1 − y2, y2)dy2, (2.2.5)

which is sometimes called the convolution formula.

Solution.

The support is −∞ < y1 − y2 <∞, −∞ < y2 <∞, i.e., −∞ < yi <∞, i = 1, 2, which gives (2.2.5).
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2.2.6. Suppose X1 and X2 have the joint pdf f(x1, x2) = e−(x1+x2), 0 < xi <∞, i = 1, 2, zero elsewhere.

(a) Use formula (2.2.5) to find the pdf of Y1 = X1 +X2.

Solution.

Since the support of (Y1, Y2) is 0 < y1 − y2 <∞, 0 < y2 <∞ ⇒ 0 < y2 < y1 <∞,

fY1
(y1) =

∫ ∞

−∞
fX1,X2

(y1 − y2, y2)dy2 =

∫ y1

0

e−y1dy2 = y1e
−y1 , y1 > 0.

(b) Find the mgf of Y1

Solution.

M(t) =

∫ ∞

0

y1e
−(1−t)y1dy1 = Γ(2)

(
1

1− t

)2

=
1

(1− t)2
, t < 1.

2.2.7. Use the formula (2.2.5) to find the pdf of Y1 = X1 + X2, where X1 and X2 have the joint pdf
fX1,X2

(x1, x2) = 2e−(x1+x2), 0 < x1 < x2 <∞, zero elsewhere.

Solution.

Since the support of Y1 and Y2 is 0 < y1 − y2 < y2, 0 < y2 <∞ ⇒ 0 < y1/2 < y2 < y1 <∞,

fY1(y1) =

∫ ∞

−∞
fX1,X2(y1 − y2, y2)dy2 =

∫ y1

y1/2

2e−y1dy2 = y1e
−y1 , y1 > 0,

which means Y ∼ Exp(1).

2.2.8. Suppose X1 and X2 have the joint pdf

f(x1, x2) =

{
e−x1e−x2 x1 > 0, x2 > 0

0 elsewhere
.

For constants w1 > 0 and w2 > 0, let W = w1X1 + w2X2.

(a) Show that the pdf pf W is

f(x1, x2) =

{
1

w1−w2
(e−w/w1 − e−w/w2) w > 0

0 elsewhere
.

Solution.

Let Z = w1X1 − w2X2. This is one-to-one transformation so that we have

x1 =
w + z

2w1
, x2 =

w − z

2w2
.

Then the Jacobian is given by

J =

∣∣∣∣∂x1

∂w
∂x1

∂z
∂x2

∂w
∂x2

∂z

∣∣∣∣ = ∣∣∣∣1/2w1 1/2w1

1/2w2 −1/2w2

∣∣∣∣ = − 1

2w1w2
.

Hence the joint pdf of W and Z is

fW,Z(w, z) = f

(
w + z

2w1
,
w − z

2w2

)
|J | = e−

w+z
2w1 e−

w−z
2w2

1

2w1w2
=

1

2w1w2
e−

w1+w2
2w1w2

we
w1−w2
2w1w2

z.

The support is

w + z

2w1
> 0,

w − z

2w2
> 0 ⇒ w > 0, −w < z < w.
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Hence the marginal pdf of W is

fW (w) =
1

2w1w2
e−

w1+w2
2w1w2

w
∫ w

−w

e
w1−w2
2w1w2

zdz

=
1

w1 − w2
e−

w1+w2
2w1w2

w
[
e

w1−w2
2w1w2

z
]w
−w

=
1

w1 − w2
e−

w1+w2
2w1w2

w
(
e

w1−w2
2w1w2

w − e−
w1−w2
2w1w2

w
)

=
1

w1 − w2
(e−w/w1 − e−w/w2), w > 0.

(b) Verify that fW (w) > 0 for w > 0.

Solution.

If w1 > w2, then w1 − w2 > 0, e−w/w1 − e−w/w2 > 0 because g(x) = e−a/x is increasing for a > 0.
If w1 < w2, then w1 − w2 < 0, e−w/w1 − e−w/w2 < 0. Hence, fW (w) > 0 for w > 0.

(c) Note that the pdf fW (w) has an indeterminate form when w1 = w2. Rewrite fW (w) using h defined
as w1 − w2 = h. Then use l’Hˆopital’s rule to show that when w1 = w2, the pdf is given by fW (w) =
(w/w2

1) exp{−w/w1} for w > 0 and zero elsewhere.

Solution.

When w1 = w2, or equivalently h→ 0,

lim
h→0

fW (w) = lim
h→0

[
e−w/w1 − e−w/(w1−h)

]
h

= lim
h→0

d
dh

[
e−w/w1 − e−w/(w1−h)

]
dh/dh

= lim
h→0

[
0 + {w/(w1 − h)2}e−w/(w1−h)

]
1

= w/w2
1e

−w/w1 .

2.3 Conditional Distributions and Expectations

2.3.5. Let X1 and X2 be two random variables such that the conditional distributions and means exist.
Show that:

(a) E(X1 +X2|X2) = E(X1|X2) +X2.

Solution.

Consider X2 = x2 (a fixed number) first.

E(X1 +X2|X2 = x2) = E(X1|X2 = x2) + x2 ⇒ E(X1 +X2|X2) = E(X1|X2) +X2.

(b) E(u(X2)|X2) = u(X2).

Solution. E(u(X2)|X2 = x2) = E(u(x2)) = u(x2) ⇒ E(u(X2)|X2) = u(X2).

2.3.6. Let the joint pdf of X and Y be given by

f(x, y) =

{
2

(1+x+y)3 0 < x <∞, 0 < x <∞
0 elsewhere.
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(a) Compute the marginal pdf of X and the conditional pdf of Y , given X = x.

Solution.

f(x) =

∫ ∞

0

2

(1 + x+ y)3
dy =

[
− 1

(1 + x+ y)2

]∞
0

=
1

(1 + x)2
0 < x <∞,

f(y|x) = f(x, y)

f(x)
=

2(1 + x)2

(1 + x+ y)3
0 < x <∞, 0 < x <∞,

zero elsewhere.

(b) For a fixed X = x, compute E(1 + x+ Y |x) and use the result to compute E(Y |x).

Solution.

E(1 + x+ Y |x) =
∫ ∞

0

(1 + x+ y)
2(1 + x)2

(1 + x+ y)3
dy =

∫ ∞

0

2(1 + x)2

(1 + x+ y)2
dy =

[
−2(1 + x)2

(1 + x+ y)

]∞
0

= 2(1 + x).

Since E(1 + x+ Y |x) = 1 + x+ E(Y |x), E(Y |x) = 1 + x.

2.3.7. Suppose X1 and X2 are discrete random variables which have the joint pmf p(x1, x2) = (3x1+x2)/24,
(x1, x2) = (1, 1), (1, 2), (2, 1), (2, 2), zero elsewhere. Find the conditional mean E(X2|x1), when x1 = 1.

Solution.

E(X2|x1 = 1) =
∑

x2∈(1,2)

x2p(1, x2) = p(1, 1) + 2p(2, 1) =
4

24
+ 2

5

24
=

7

12
.

2.3.8. Let X and Y have the joint pdf f(x, y) = 2 exp{−(x+ y)}, 0 < x < y <∞, zero elsewhere. Find the
conditional mean E(Y |x) of Y , given X = x.

Solution.

f(x) =

∫ ∞

x

2 exp{−(x+ y)}dy = 2e−2x ⇒ f2|1(y|x) =
f(x, y)

f(x)
= ex−y 0 < x < y <∞.

Hence,

E(Y |x) =
∫ ∞

x

yex−ydy =

∫ ∞

0

(x+ t)e−tdt = x+ 1, x > 0.

2.3.10. Let X1 and X2 have the joint pmf p(x1, x2) described as follows:

(x1, x2) (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
p(x1, x2)

1
18

3
18

4
18

3
18

6
18

1
18

and p(x1, x2) is equal to zero elsewhere. Find the two marginal probability mass functions and the two
conditional means.
Hint: Write the probabilities in a rectangular array.

Solution.

p(x1) =

{
11
18 x2 = 0
7
18 x2 = 1

, p(x2) =


4
18 x1 = 0
7
18 x1 = 1
7
18 x1 = 2

,

E(X1|X2 = x2) =

{
16
18 x2 = 0
5
18 x2 = 1

, E(X2|X1 = x1) =


3
18 x1 = 0
3
18 x1 = 1
1
18 x1 = 2

.
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2.3.11. Let us choose at random a point from the interval (0, 1) and let the random variable X1 be equal to
the number that corresponds to that point. Then choose a point at random from the interval (0, x1), where
x1 is the experimental value of X1; and let the random variable X2 be equal to the number that corresponds
to this point.

(a) Make assumptions about the marginal pdf f1(x1) and the conditional pdf f2|1(x2|x1).

Solution.

Assume that X1 ∼ U(0, 1) and X2|X1 = x1 ∼ U(0, x2):

f(x1) = I(0 < x1 < 1), f(x2|x1) =
1

x1
I(0 < x2 < x1).

(b) Compute P (X1 +X2 ≥ 1).

Solution.

By (a), f1,2(x1, x2) = f(x2|x1)f(x1) = 1/x1, 0 < x2 < x1 < 1. Hence,

P (X1 +X2 ≥ 1) = P (X2 ≥ 1−X1) =

∫ 1

1/2

∫ x1

1−x1

1

x1
dx2dx1 =

∫ 1

1/2

(
2− 1

x1

)
dx1 = 1− log 2.

(c) Find the conditional mean E(X1|x2)

Solution.

Find f(x2) to get f(x1|x2).

f(x2) =

∫ 1

x2

1

x1
dx1 = − log x2, 0 < x2 < 1 ⇒ f(x1|x2) =

f(x1, x2)

f(x2)
= − 1

x1 log x2
, 0 < x2 < x1 < 1.

Hence,

E(X1|X2 = x2) =

∫ 1

x2

− 1

log x2
dx1 =

1− x2
log(1/x2)

, 0 < x2 < 1.

2.3.12. Let f(x) and F (x) denote, respectively, the pdf and the cdf of the random variableX. The conditional
pdf of X, given X > x0, x0 a fixed number, is defined by f(x|X > x0) = f(x)/[1 − F (x0)], x0 < x, zero
elsewhere. This kind of conditional pdf finds application in a problem of time until death, given survival
until time x0.

(a) Show that f(x|X > x0) is a pdf.

Solution.

Since f(x) > 0 and 0 < F (x) < 1, f(x|X > x0) = f(x)/[1− F (x0)] > 0. Also,∫ ∞

x0

f(x|X > x0)dx =

∫ ∞

x0

f(x)

[1− F (x0)]
dx =

1

[1− F (x0)]
[F (x)]∞x0

= 1 since F (∞) = 1.

(b) Let f(x) = e−x, 0 < x <∞, and zero elsewhere. Compute P (X > 2|X > 1).

Solution.

Since F (x) = 1− e−x, x > 0, f(x|X > 1) = f(x)/[1− F (1)] = e−x+1. Hence,

P (X > 2|X > 1) =

∫ ∞

2

f(x|X > 1)dx =

∫ ∞

2

e−x+1dx = [−e−x+1]∞2 = e−1.
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2.4 Independent Random Variables

2.4.1. Show that the random variables X1 and X2 with joint pdf

f(x1, x2) =

{
12x1x2(1− x2) 0 < x1 < 1, 0 < x2 < 1

0 elsewhere

are independent.

Solution.

The support is rectangular (a product space). And f(x1, x2) can be written as a product of a nonnegative
function of x1 and a nonnegative function of x2 : f(x1, x2) ≡ g(x1)h(x2), where g(x1) = 12x1I(0 < x1 < 1)
and h(x2) = x2(1− x2)I(0 < x2 < 1). Thus, X1 and X2 are independent.

Another solution is f(x1, x2) = f(x1)f(x2), where f(x1) = 2x1 and f(x2) = 6x2(1 − x2) are marginal pdfs
of X1 and X2.

2.4.2. If the random variables X1 and X2 have the joint pdf f(x1, x2) = 2e−x1−x2 , 0 < x1 < x2, 0 < x2 <∞,
zero elsewhere, show that X1 and X2 are dependent.

Solution.

Although the joint pdf can be expressed by a product of two nonnegative functions of x1 and x2, respectively,
0 < x1 < x2 <∞ is not a product space, which implies that X1 and X2 are dependent.

2.4.3. Let p(x1, x2) =
1
16 , x1 = 1, 2, 3, 4, and x2 = 1, 2, 3, 4, zero elsewhere, be the joint pmf of X1 and X2.

Show that X1 and X2 are independent.

Solution.

The marginal pdfs of X1 and X2 are p(x1) = p(x2) = 1/4. So p(x1, x2) = p(x1)p(x2) and the space is
rectangular, which gives us X1 and X2 are independent.

2.4.4. Find P (0 < X1 <
1
3 , 0 < X2 <

1
3 ) if the random variables X1 and X2 have the joint pdf f(x1, x2) =

4x1(1− x2), 0 < x1 < 1, 0 < x2 < 1, zero elsewhere.

Solution.

Since f(x1) = 2x1, 0 < x1 < 1 and f(x2) = 2(1− x2), 0 < x2 < 1 and X1 and X2 are independent,

P

(
0 < X1 <

1

3
, 0 < X2 <

1

3

)
= P

(
0 < X1 <

1

3

)
P

(
0 < X2 <

1

3

)
=

(∫ 1/3

0

2x1dx1

)(∫ 1/3

0

2(1− x2)dx2

)

=

(
1

9

)(
5

9

)
=

5

81
.

2.4.5. Find the probability of the union of the events a < X1 < b, −∞ < X2 < ∞, and −∞ < X1 < ∞,
c < X2 < d if X1 and X2 are two independent variables with P (a < X1 < b) = 2

3 and P (c < X2 < d) = 5
8 .

Solution.

P ({a < X1 < b,∞ < X2 <∞} ∪ {−∞ < X1 <∞, c < X2 < d})
= P ({a < X1 < b} ∪ {c < X2 < d})
= P (a < X1 < b) + P (c < X2 < d)− P ({a < X1 < b} ∩ {c < X2 < d})
= P (a < X1 < b) + P (c < X2 < d)− P (a < X1 < b)P (c < X2 < d)

=
2

3
+

5

8
− 2

3

(
5

8

)
=

7

8
.
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2.4.8. Let X and Y have the joint pdf f(x, y) = 3x, 0 < y < x < 1, zero elsewhere. Are X and Y
independent? If not, find E(X|y).

Solution.

X and Y are not independent because the support 0 < y < x < 1 is not rectangular (not a product space).

So find f(y) first: f(y) =
∫ 1

y
3xdx = 3(1− y2)/2, 0 < y < 1, zero elsewhere. Hence

E(X|y) =
∫ ∞

−∞
x
f(x, y)

f(y)
dx =

∫ 1

y

2x2

(1− y2)
dx =

2(1− y3)

3(1− y2)
=

2(1 + y + y2)

3(1 + y)
, 0 < y < 1.

2.4.10. Let X and Y be random variables with the space consisting of the four points (0, 0), (1, 1), (1, 0),
(1,−1). Assign positive probabilities to these four points so that the correlation coefficient is equal to zero.
Are X and Y independent?

Solution.

Assume the uniform distribution as shown below:

x1, x2 -1 0 1 pX1
(x1)

0 0 1/4 0 1/4
1 1/4 1/4 1/4 3/4

pX2(x2) 1/4 1/2 1/4

Then, correlation coefficient ρ = 0 because

E(X) = 3/4, E(Y ) = 0, E(XY ) = −1/4 + 1/4 = 0 ⇒ E(XY )− E(X)E(Y ) = 0.

However, P (X1 = X2 = 1) = 1/4 ̸= 3/16 = pX1
(1)pX2

(1), meaning that X and Y are not independent.

2.4.11. Two line segments, each of length two units, are placed along the x-axis. The midpoint of the first
is between x = 0 and x = 14 and that of the second is between x = 6 and x = 20. Assuming independence
and uniform distributions for these midpoints, find the probability that the line segments overlap.

Solution.

Since X1 ∼ U(0, 14) and X2 ∼ U(6, 20), the joint pdf of X1 and X2 is f(x1, x2) = 1/142. The desired
probability is

P (X1 ≥ X2) =

∫ 14

6

∫ x1

6

1

142
dx2dx1 =

(x1 − 6)2

2(142)

∣∣∣14
6

=
8

49
.

2.4.12. Cast a fair die and let X = 0 if 1, 2, or 3 spots appear, let X = 1 if 4 or 5 spots appear, and let
X = 2 if 6 spots appear. Do this two independent times, obtaining X1 and X2. Calculate P (|X1 −X2| = 1).

Solution.

|X1 − X2| = 1 when (X1, X2) = (0, 1), (1, 0), (1, 2), (2, 1) with probabilities of 1/6, 1/6, 1/18, and 1/18,
respectively. Hence the desired probability is 2(1/6 + 1/18) = 4/9.

2.4.13. For X1 and X2 in Example 2.4.6, show that the mgf of Y = X1 +X2 is e2t/(2− et)2, t < log 2, and
then compute the mean and variance of Y .

Solution.

Let t = t1 = t2 then

MY (t) =MX1,X2(t, t) =

(
et

2− et

)2

=
e2t

(2− et)2
, t < log 2.
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Let ψ(t) = logMY (t) = 2t− 2 log(2− et). Then

E(Y ) = ψ′(0) = 2 +
2et

2− et

∣∣∣
t=0

= 4,

Var(Y ) = ψ′′(0) =
4et

(2− et)2

∣∣∣
t=0

= 4.

2.5. The Correlation Coefficient

2.5.1. Let the random variables X and Y have the joint pmf

(a) p(x, y) = 1
3 , (x, y) = (0, 0), (1, 1), (2, 2), zero elsewhere.

(b) p(x, y) = 1
3 , (x, y) = (0, 2), (1, 1), (2, 0), zero elsewhere.

(c) p(x, y) = 1
3 , (x, y) = (0, 0), (1, 1), (2, 0), zero elsewhere.

In each case compute the correlation coefficient of X and Y .

Solution.

For (a) and (b), the scatter plots clearly show that ρ = 1 and ρ = −1, respectively.

For (c), since E(X) = 1, E(Y ) = 1
3 , and E(XY ) = 1

3 , Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0. Thus, ρ = 0.

2.5.3. Let f(x, y) = 2, 0 < x < y, 0 < y < 1, zero elsewhere, be the joint pdf of X and Y . Show that the
conditional means are, respectively, (1 + x)/2, 0 < x < 1, and y/2, 0 < y < 1. Show that the correlation
coefficient of X and Y is ρ = 1

2 .

Solution.

Find the marginal pdfs of X and Y first.

f(x) =

∫ 1

x

2dy = 2(1− x), 0 < x < 1, f(y) =

∫ y

0

2dx = 2y, 0 < y < 1.

Hence,

E(Y |X = x) =

∫ ∞

−∞
yf(y|x)dy =

∫ ∞

−∞
y
f(x, y)

f(x)
dy =

∫ 1

x

y

1− x
dy =

1 + x

2
, 0 < x < 1,

E(X|Y = y) =

∫ ∞

−∞
xf(x|y)dy =

∫ ∞

−∞
x
f(x, y)

f(y)
dy =

∫ y

0

x

y
dy =

y

2
, 0 < y < 1.

2.5.4. Show that the variance of the conditional distribution of Y , given X = x, in Exercise 2.5.3, is
(1 − x)2/12, 0 < x < 1, and that the variance of the conditional distribution of X, given Y = y, is y2/12,
0 < y < 1.

Solution.

E(Y 2|X = x) =

∫ 1

x

y2

1− x
dy =

1 + x+ x2

3
, 0 < x < 1,

E(X2|Y = y) =

∫ y

0

x2

y
dy =

y2

3
, 0 < y < 1.

Hence,

Var(Y |X = x) = E(Y 2|X = x)− [E(Y |X = x)]2 =
1 + x+ x2

3
− (1 + x)2

4
=

(1− x)2

12
, 0 < x < 1,

Var(X|Y = y) = E(X2|Y = y)− [E(X|Y = y)]2 =
y2

3
− y2

4
=
y2

12
, 0 < y < 1.
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2.5.5. Verify the results of equations (2.5.11) of this section.

Solution. See Exercise 2.5.8 because using ψ(t1, t2) is easier to compute them.

2.5.6. Let X and Y have the joint pdf f(x, y) = 1, −x < y < x, 0 < x < 1, zero elsewhere. Show that, on
the set of positive probability density, the graph of E(Y |x) is a straight line, whereas that of E(X|y) is not
a straight line.

Solution.

Find the marginal pdfs of X and Y first.

f(x) =

∫ x

−x

dy = 2x, 0 < x < 1, f(y) =

{∫ 1

y
dx = 1− y 0 < y < 1∫ 1

0
dx = 1 −1 < y ≤ 0

.

Hence,

E(Y |x) =
∫ ∞

−∞
yf(y|x)dy =

∫ ∞

−∞
y
f(x, y)

f(x)
dy =

∫ x

−x

y

2x
dy = 0, 0 < x < 1,

E(X|y) =
∫ ∞

−∞
xf(x|y)dy =

∫ ∞

−∞
x
f(x, y)

f(y)
dy =

{∫ 1

y
x

1−ydy = 1+y
2 0 < y < 1∫ 1

0
xdy = 1

2 −1 < y ≤ 0,

which means that the graph of E(Y |x) is a straight line, whereas that of E(X|y) is not a straight line.

2.5.8. Let ψ(t1, t2) = logM(t1, t2), where M(t1, t2) is the mgf of X and Y . Show that

∂ψ(0, 0)

∂ti
,
∂2ψ(0, 0)

∂t2i
, i = 1, 2,

and
∂2ψ(0, 0)

∂t1t2
yield the means, the variances, and the covariance of the two random variables. Use this result to find the
means, the variances, and the covariance of X and Y of Example 2.5.6.

Solution.

Note that M(0, 0) = E(1) = 1. When i = 1,

∂ψ(0, 0)

∂t1
=
∂M(0, 0)/∂t1
M(0, 0)

=

∫ ∞

−∞
x

∫ ∞

−∞
f(x, y)dydx =

∫ ∞

−∞
xf(x)dx = E(X),

∂2ψ(0, 0)

∂t21
=
M(0, 0)∂2M(0, 0)/∂t21 − [∂M(0, 0)/∂t1]

2

M(0, 0)2
= E(X2)− [E(X)]2 = Var(X).

Same for i = 2. And

∂2ψ(0, 0)

∂t1t2
=

∂

∂t2

∂M(0, 0)/∂t1
M(0, 0)

=
[∂2M(0, 0)/∂t1t2]M(0, 0)− [∂M(0, 0)/∂t1][∂M(0, 0)/∂t2]

M(0, 0)2

= E(XY )− E(X)E(Y ) = Cov(X,Y ).

Hence, for Example 2.5.6,

ψ(t1, t2) = logM(t1, t2) = − log(1− t1 − t2)− log(1− t2),

∂ψ(t1, t2)

∂t1
=

1

1− t1 − t2
,

∂ψ(t1, t2)

∂t2
=

1

1− t1 − t2
+

1

1− t2
∂2ψ(t1, t2)

∂t21
=

1

(1− t1 − t2)2
,

∂2ψ(t1, t2)

∂t22
=

1

(1− t1 − t2)2
+

1

(1− t2)2

∂2ψ(t1, t2)

∂t1t2
=

1

(1− t1 − t2)2
.
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Therefore,

µ1 = E(X) =
∂ψ(0, 0)

∂t1
= 1, µ2 = E(Y ) =

∂ψ(0, 0)

∂t2
= 2

σ2
1 = Var(X) =

∂2ψ(0, 0)

∂t21
= 1, σ2

2 = Var(Y ) =
∂2ψ(0, 0)

∂t22
= 2

E[(X − µ1)(Y − µ2)] = Cov(X,Y ) =
∂2ψ(0, 0)

∂t1t2
= 1.

2.5.9. LetX and Y have the joint pmf p(x, y) = 1
7 , (0, 0), (1, 0), (0, 1), (1, 1), (2, 1), (1, 2), (2, 2), zero elsewhere.

Find the correlation coefficient ρ.

Solution.

E(X) = E(Y ) =
1 + 1 + 2 + 1 + 2

7
= 1, E(X2) = E(Y 2) =

1 + 1 + 4 + 1 + 4

7
=

11

7

⇒ σ2
X = σ2

Y =
11

7
− 1 =

4

7
, E(XY ) =

1 + 2 + 2 + 4

7
=

9

7
.

Hence,

ρ =
E(XY )− E(X)E(Y )

σXσY
=

2/7

4/7
=

1

2
.

2.5.11. Let σ2
1 = σ2

2 = σ2 be the common variance of X1 and X2 and let ρ be the correlation coefficient of
X1 and X2. Show for k > 0 that

P [|(X1 − µ1) + (X2 − µ2)| ≥ kσ] ≤ 2(1 + ρ)

k2
.

Solution.

P [|(X1 − µ1) + (X2 − µ2)| ≥ kσ] = P [|(X1 − µ1) + (X2 − µ2)|2 ≥ k2σ2]

= P [(X1 − µ1)
2 + (X2 − µ2)

2 + 2(X1 − µ1)(X2 − µ2) ≥ k2σ2]

≤ P [(X1 − µ1)
2 ≥ k2σ2] + P [(X2 − µ2)

2 ≥ k2σ2]

+ P [2(X1 − µ1)(X2 − µ2) ≥ k2σ2]

= P (|X1 − µ1| ≥ kσ) + P (|X2 − µ2| ≥ kσ)

+ P [2(X1 − µ1)(X2 − µ2) ≥ k2σ2]

≤ 1

k2
+

1

k2
+

2E(X1 − µ1)(X2 − µ2)

k2σ2

=
2(1 + ρ)

k2
since

E(X1 − µ1)(X2 − µ2)

σ2
= ρ.

2.6. Extension to Several Random Variables

2.6.1. Let X,Y, Z have joint pdf f(x, y, z) = 2(x+y+ z)/3, 0 < x < 1, 0 < y < 1, 0 < z < 1, zero elsewhere.

(a) Find the marginal probability density functions of X,Y , and Z.

Solution.

fX(x) =

∫ 1

0

∫ 1

0

2(x+ y + z)

3
dzdy = · · · = 2(x+ 1)

3
.

Similarly,

fY (y) =
2(y + 1)

3
, fZ(z) =

2(z + 1)

3
.
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(b) Compute P (0 < X < 1
2 , 0 < Y < 1

2 , 0 < Z < 1
2 ) and P (0 < X < 1

2 ) = P (0 < Y < 1
2 ) = P (0 < Z < 1

2 ).

Solution. Skipped. We can solve part (c) without computing them.

(c) Are X,Y , and Z independent?

Solution. No; f(x, y, x) ̸= f(x)f(y)f(z) although the support is a product space.

(d) Compute E(X2Y Z + 3XY 4Z2).

Solution. Skipped.

(e) Determine the cdf of X,Y , and Z.

Solution.

FX(x) =


0 x ≤ 0∫ x

0
2(t+1)

3 dt = (x+1)2−1
3 = x2+2x

3 0 < x < 1

1 x ≥ 1

.

Similarly,

FY (y) =


0 y ≤ 0
y2+2y

3 0 < y < 1

1 y ≥ 1

, FZ(z) =


0 z ≤ 0
z2+2z

3 0 < z < 1

1 z ≥ 1

.

(f) Find the conditional distribution of X and Y , given Z = z, and evaluate E(X + Y |z).

Solution.

f(x, y|z) = f(x, y, z)

f(z)
=
x+ y + z

z + 1
, 0 < x < 1, 0 < y < 1.

Hence,

E(X + Y |z) =
∫ 1

0

∫ 1

0

(x+ y)
x+ y + z

z + 1
dydx

=

∫ 1

0

∫ 1

0

(x+ y)2 + z(x+ y)

z + 1
dydx

=
1

z + 1

∫ 1

0

[
(x+ y)3

3
+
z(x+ y)2

2

]y=1

y=0

dx

=
1

z + 1

∫ 1

0

[
(x+ 1)3

3
+
z(x+ 1)2

2
− x3

3
− zx2

2

]
dx

=
1

z + 1

[
(x+ 1)4

12
+
z(x+ 1)3

6
− x4

12
− zx3

6

]1
0

=
z + 7/6

z + 1
=

6z + 7

6(z + 1)
, 0 < z < 1.

(g) Determine the conditional distribution of X, given Y = y and Z = z, and compute E(X|y, z).

Solution.

f(y, z) =

∫ 1

0

2(x+ y + z)

3
dx =

2y + 2z + 1

3

f(x|y, z) = f(x, y, z)

f(y, z)
=

2(x+ y + z)

2y + 2z + 1
.
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Hence,

E(X|y, z) =
∫ 1

0

x
2(x+ y + z)

2y + 2z + 1
dx =

∫ 1

0

2x2 + 2x(y + z)

2y + 2z + 1
= · · · = 3y + 3z + 2

3(2y + 2z + 1)
, 0 < y, z < 1.

2.6.2. Let f(x1, x2, x3) = exp[−(x1 + x2 + x3)], 0 < x1 < ∞, 0 < x2 < ∞, 0 < x3 < ∞, zero elsewhere, be
the joint pdf of X1, X2, X3.

(a) Compute P (X1 < X2 < X3) and P (X1 = X2 < X3).

Solution.

P (X1 < X2 < X3) =

∫ ∞

0

∫ x3

0

∫ x2

0

e−x1−x2−x3dx1dx2dx3

=

∫ ∞

0

∫ x3

0

[e−x2−x3 − e−2x2−x3 ]dx2dx3

=

∫ ∞

0

[(e−x3 − e−2x3)− (e−x3/2− e−3x3/2)]dx3

= (1− 1/2)− (1/2− 1/6) =
1

6
,

P (X1 = X2 < X3) =

∫ ∞

0

∫ x3

0

∫ x2

x2

e−x1−x2−x3dx1dx2dx3 = 0.

(b) Determine the joint mgf of X1, X2, and X3. Are these random variables independent?

Solution.

M(t1, t2, t3) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(1−t1)x1e−(1−t2)x2e−(1−t3)x3dx1dx2dx3

=

∫ ∞

0

e−(1−t1)x1dx1

∫ ∞

0

e−(1−t2)x2dx2

∫ ∞

0

e−(1−t3)x3dx3

=
1

(1− t1)(1− t2)(1− t3)
, t1 < 1, t2 < 1, t3 < 1

=MX1(t1)MX2(t2)MX3(t3),

which clearly shows that these three random varialbes are independent.

2.6.7. Prove Corollary 2.6.1: Suppose X1, X2, ..., Xn are iid random variables with the common mgf M(t),
for −h < t < h, where h > 0. Let T =

∑n
i=1Xi. Then T has the mgf given by

MT (t) = [M(t)]n, −h < t < h.

Solution.

MT (t) = E
[
e
∑n

i=1 Xit
]
=

n∏
i=1

E(eXit) (X ′
is are independent)

= [E(eXt)]n (X ′
is are identical)

= [MX(t)]n.

2.6.9. Let X1, X2, X3 be iid with common pdf f(x) = exp(−x), 0 < x <∞, zero elsewhere. Evaluate:

(a) P (X1 < X2|X1 < 2X2).

Solution.

P (X1 < X2|X1 < 2X2) =
P (X1 < X2, X1 < 2X2)

P (X1 < 2X2)
=

P (X1 < X2)

P (X1 < 2X2)
.
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For the numerator,

P (X1 < X2) =

∫ ∞

0

∫ ∞

x1

e−x1−x2dx2dx1 =

∫ ∞

0

e−2x1dx2 =
1

2
.

For the denominator,

P (X1 < 2X2) =

∫ ∞

0

∫ ∞

x1/2

e−x1−x2dx2dx1 =

∫ ∞

0

e−3x1/2dx2 =
2

3
.

Thus, P (X1 < X2|X1 < 2X2) =
1/2
2/3 = 3

4 .

(b) P (X1 < X2 < X3|X3 < 1).

Solution.

P (X1 < X2 < X3|X3 < 1) =
P (X1 < X2 < X3 < 1)

P (X3 < 1)
.

For the numerator,

P (X1 < X2 < X3 < 1) =

∫ 1

0

∫ x3

0

∫ x2

0

e−x1−x2−x3dx1dx2dx3

=

∫ 1

0

∫ x3

0

[e−x2−x3 − e−2x2−x3 ]dx2dx3

=

∫ 1

0

[(e−x3 − e−2x3)− (e−x3/2− e−3x3/2)]dx3

=

∫ 1

0

[e−x3/2− e−2x3 + e−3x3/2)]dx3

=
1− e−1

2
− 1− e−2

2
+

1− e−3

6

=
1− 3e−1 + 3e−2 − e−3

6

For the denominator,

P (X3 < 1) =

∫ 1

0

e−x3dx3 = 1− e−1.

Hence

P (X1 < X2 < X3|X3 < 1) =
P (X1 < X2 < X3 < 1)

P (X3 < 1)
=

1− 3e−1 + 3e−2 − e−3

6(1− e−1)
≈ 0.0666.

2.7. Transformations for Several Random Variables

Skipped because of a just extension from two random variables.

2.8. Linear Combinations of Random Variables

2.8.3. Let X1 and X2 be two independent random variables so that the variances of X1 and X2 are σ2
1 = k

and σ2
2 = 2, respectively. Given that the variance of Y = 3X2 −X1 is 25, find k.

Solution.

Var(Y ) = 32Var(X2) + Var(X1) X1, X2 are independent

= 9σ2
2 + σ2

1 = 18 + k.
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Hence, Var(Y ) = 25 ⇒ k = 7.

2.8.6. Determine the mean and variance of the sample mean X=̄5−1
∑5

i=1Xi, where X1, . . . , X5 is a random
sample from a distribution having pdf f(x) = 4x3, 0 < x < 1, zero elsewhere.

Solution.

E(X) =

∫ 1

0

x(4x3)dx =
4

5
, E(X2) =

∫ 1

0

x2(4x3)dx =
2

3
⇒ Var(X) =

2

75
.

Hence,

E(X̄) = E(X) =
4

5
= 0.8, Var(X̄) =

Var(X)

5
=

2

375
≈ 0.00533.

2.8.7. Let X and Y be random variables with µ1 = 1, µ2 = 4, σ2
1 = 4, σ2

2 = 6, ρ = 1
2 . Find the mean and

variance of the random variable Z = 3X − 2Y .

Solution.

E(Z) = 3E(X)− 2E(Y ) = 3µ1 − 2µ2 = −5

Var(Z) = 32Var(X) + 22Var(Y )− 12Cov(X,Y )

= 9σ2
1 + 4σ2

2 − 12ρσ1σ2

= 60− 12
√
6 ≈ 30.6.

2.8.8. Let X and Y be independent random variables with means µ1, µ2 and variances σ2
1 , σ

2
2 . Determine

the correlation coefficient of X and Z = X − Y in terms of µ1, µ2, σ
2
1 , σ

2
2 .

Solution.

Since X and Y are independent,

Var(Z) = Var(X) + Var(Y ) = σ2
1 + σ2

2 ,

Cov(X,Z) = Cov(X,X − Y ) = Var(X)− Cov(X,Y ) = σ2
1 .

Hence, the correlation coefficient is

ρ =
Cov(X,Z)√
Var(X)Var(Z)

=
σ2
1√

σ2
1(σ

2
1 + σ2

2)
=

σ1√
σ2
1 + σ2

2

.

2.8.10. Determine the correlation coefficient of the random variables X and Y if var(X) = 4, var(Y ) = 2,
and var(X + 2Y ) = 15.

Solution.

15 = Var(X + 2Y ) = Var(X) + 4Var(Y ) + 4Cov(X,Y ) = 4 + 4(2) + 4ρ
√
4
√
2 = 12 + 8

√
2ρ.

Hence, ρ = 3/(8
√
2) ≈ 0.265.

2.8.11. Let X and Y be random variables with means µ1, µ2; variances σ
2
1 , σ

2
2 ; and correlation coefficient

ρ. Show that the correlation coefficient of W = aX + b, a > 0, and Z = cY + d, c > 0, is ρ.

Solution.

Var(W ) = a2Var(X) = a2σ2
1 , Var(Z) = c2Var(Y ) = c2σ2

2 , Cov(W,Z) = acCov(X,Y ) = acρσ1σ2.

Hence, Corr(W,Z) = Cov(W,Z)/(
√
Var(W )Var(Z)) = ρ because a > 0 and c > 0.
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2.8.13. Let X1 and X2 be independent random variables with nonzero variances. Find the correlation
coefficient of Y = X1X2 and X1 in terms of the means and variances of X1 and X2.

Solution.

Let µ1, µ2 and σ2
1 , σ

2
2 denote the means and the variances of X1 and X2, respectively. Since the two r.v.s.

are independent,

Var(Y ) = Var(X1X2)

= E(X2
1X

2
2 )− E(X1X2)

2

= E(X2
1 )E(X2

2 )− E(X1)
2E(X2)

2

= (µ2
1 + σ2

1)(µ
2
2 + σ2

2)− µ2
1µ

2
2

= µ2
1σ

2
2 + σ2

1µ
2
2 + σ2

1σ
2
2 ,

Cov(Y,X1) = Cov(X1X2, X1)

= E(X2
1X2)− E(X1X2)E(X1)

= E(X2
1 )E(X2)− E(X1)

2E(X2)

= (µ2
1 + σ2

1)µ2 − µ2
1µ2

= σ2
1µ2

Hence,

ρ =
Cov(Y,X1)√
Var(Y )Var(X1)

=
σ2
1µ2√

µ2
1σ

2
2 + σ2

1µ
2
2 + σ2

1σ
2
2(σ1)

=
σ1µ2√

µ2
1σ

2
2 + σ2

1µ
2
2 + σ2

1σ
2
2

.

2.8.15. Let X1, X2, and X3 be random variables with equal variances but with correlation coefficients
ρ12 = 0.3, ρ13 = 0.5, and ρ23 = 0.2. Find the correlation coefficient of the linear functions Y = X1 +X2 and
Z = X2 +X3.

Solution.

Let σ2 denote the variance of X1, X2, and X3. Then

Var(Y ) = Var(X1) + Var(X2) + 2Cov(X1, X2) = 2σ2(1 + ρ12) = 2.6σ2,

Var(Z) = Var(X2) + Var(X3) + 2Cov(X2, X3) = 2σ2(1 + ρ23) = 2.4σ2,

Cov(Y,Z) = Cov(X1 +X2, X2 +X3) = σ2(ρ12 + ρ13 + 1 + ρ23) = 2σ2.

Therefore, the correlation coefficient, ρ, is

ρ =
Cov(Y, Z)√
Var(Y )Var(Z)

=
2σ2√

2.6(2.4)σ2
≈ 0.801.

2.8.17. Let X and Y have the parameters µ1, µ2, σ
2
1 , σ

2
2 , and ρ. Show that the correlation coefficient of X

and [Y − ρ(σ2/σ1)X] is zero.

Solution.

Cov(X,Y − ρ(σ2/σ1)X) = Cov(X,Y )− ρ(σ2/σ1)Var(X) = ρσ1σ2 − ρ(σ2/σ1)σ
2
1 = 0.
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