
Exercises in Introduction to Mathematical Statistics (Ch. 3)

Tomoki Okuno

September 14, 2022

Note

• Not all solutions are provided: exercises that are too simple or not very important to me are skipped.

• Texts in red are just attentions to me. Please ignore them.

3 Some Special Distributions

3.1 The Binomial and Related Distributions

3.1.1. If the mgf of a random variable X is ( 13 + 2
3e

t)5, find P (X = 2 or 3). Verify using the R function
dbinom.

Solution.

Let X ∼ B(n, p). Then the mgf of X is given by

MX(t) =

n∑
x=0

(
n

x

)
(pet)x(1− p)n−x = [(1− p) + pet]n since (a+ b)n =

n∑
x=0

(
n

x

)
axbn−x,

which gives n = 5 and p = 2/3 in this case. Hence,

P (X = 2 or 3) = P (X = 2) + P (X = 3) =

(
5

2

)(
2

3

)2 (
1

3

)3

+

(
5

3

)(
2

3

)3 (
1

3

)2

=
40

81
.

3.1.4. Let the independent random variables X1, X2, ..., X40 be iid with the common pdf f(x) = 3x2,
0 < x < 1, zero elsewhere. Find the probability that at least 35 of the Xi’s exceed

1
2 .

Solution.

Since FX(x) = x4, 0 < x < 1, P (X > 1/2) = 1− FX(1/2) = 7/8. Hence, the desired probability is

40∑
x=35

(
40

x

)(
7

8

)x (
1

8

)n−x

= 1 - dbinom(34, 40, 7/8) = 0.6162.

3.1.6. Let Y be the number of successes throughout n independent repetitions of a random experiment with
probability of success p = 1

4 . Determine the smallest value of n so that P (1 ≤ Y ) ≥ 0.70.

Solution.

P (1 < Y ) = 1− P (Y = 0) = 1−
(
3

4

)n

≥ 0.70, ⇒
(
3

4

)n

≤ 0.3.

Hence, n = 5 because (3/4)4 = 0.316 > 0.3 > (3/4)5 = 0.237.
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3.1.7. Let the independent random variables X1 and X2 have binomial distribution with parameters n1 = 3,
p = 2

3 and n2 = 4, p = 1
2 , respectively. Compute P (X1 = X2).

Solution.

Note that X1 and X2 are independent, then

P (X1 = X2) =

3∑
k=0

P (X1 = X2 = k) =

3∑
k=0

P (X1 = k)P (X2 = k) = · · · = 43

144
.

3.1.11. Toss two nickels and three dimes at random. Make appropriate assumptions and compute the
probability that there are more heads showing on the nickels than on the dimes.

Solution.

Let X1 and X2 denote the number of heads showing on the nickels and dimes, respectively. Assume that
X1 ∼ B(2, 12 ) and X2 ∼ B(3, 12 ). Then

P (X1 > X2) = P (X1 = 1 or 2, X2 = 0) + P (X1 = 2, X2 = 1)

=

(
1

2
+

1

4

)(
1

8

)
+

(
1

4

)(
3

8

)
=

3

16
.

3.1.13. Let X be b(2, p) and let Y be b(4, p). If P (X ≥ 1) = 5
9 , find P (Y ≥ 1).

Solution.

5

9
= P (X ≥ 1) = 1− P (X = 0) = 1− (1− p)2 ⇒ p =

1

3
.

Thus,

P (Y ≥ 1) = 1− P (Y = 0) = 1−
(
2

3

)4

=
65

81
.

3.1.14. Let X have a binomial distribution with parameters n and p = 1
3 . Determine the smallest integer n

can be such that P (X ≥ 1) ≥ 0.85.

Solution.

0.85 ≤ P (X ≥ 1) = 1− P (X = 0) = 1− (2/3)n ⇒ (2/3)n ≤ 0.15,

which gives n = 5 because (2/3)4 = 0.20 > 0.15 > (2/3)5 = 0.13.

3.1.15. Let X have the pmf p(x) = (13 )(
2
3 )

x, x = 0, 1, 2, 3, ..., zero elsewhere. Find the conditional pmf of X
given that X ≥ 3.

Solution.

P (X = x|X ≥ 3) =
P (X = x)

P (X ≥ 3)
=

p(x)

1− p(0)− p(1)− p(2)
=

( 13 )(
2
3 )

x

( 23 )
3

=
1

3

(
2

3

)x−3

, x = 3, 4, 5, . . . .

3.1.17. Show that the moment generating function of the negative binomial distribution is M(t) = pr[1 −
(1− p)et]−r. Find the mean and the variance of this distribution.

Solution.

Let X ∼ Geometric(p) and Y =
∑r

i=1Xi. Then Y ∼ NB(r, p). Since the pmf of X is p(x) = p(1 − p)x,
x = 0, 1, 2, ...,

MX(t) =

∞∑
x=0

p[(1− p)et]x =
p

1− (1− p)et
, t < − log(1− p).
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Hence, the mgf of Y is

MY (t) = [MX(t)]r =
pr

[1− (1− p)et]r
.

Let ψ(t) = logMY (t) = r log p− r log[1− (1− p)et]. Then

µ = ψ′(0) =
r(1− p)et

1− (1− p)et

∣∣∣
t=0

=
r(1− p)

p
, σ2 = ψ′′(0) =

r(1− p)et

[1− (1− p)et]2

∣∣∣
t=0

=
r(1− p)

p2
.

3.1.21. Let X1 and X2 have a trinomial distribution. Differentiate the moment generating function to show
that their covariance is −np1p2.

Solution.

By a natural extension of a binomial, the mgf of the trinomial distribution is given by

MX1,X2
(t1, t2) = [(1− p1 − p2) + p1e

t1 + p2e
t2 ]n.

Let ψ(t1, t2) = logMX1,X2
(t1, t2) = n log[(1− p1 − p2) + p1e

t1 + p2e
t2 ]. Then

∂ψ(t1, t2)

∂t1
=

np1e
t1

(1− p1 − p2) + p1et1 + p2et2
,

∂2ψ(t1, t2)

∂t1∂t2
=

−np1et1p2et2
[(1− p1 − p2) + p1et1 + p2et2 ]2

.

Hence,

Cov(X1, X2) =
∂2ψ(0, 0)

∂t1∂t2
= −np1p2.

3.1.22. If a fair coin is tossed at random five independent times, find the conditional probability of five heads
given that there are at least four heads.

Solution.

Let X denote the number of heads of five independent times. Then the desired possibility is given by

P (X = 5|X ≥ 4) =
P (X = 5, X ≥ 4)

P (X ≥ 4)
=

P (X = 5)

P (X = 4) + P (X = 5)
=

(1/2)5(
5
4

)
(1/2)5 + (1/2)5

=
1

6
.

3.1.25. Let

p(x1, x2) =

(
x1
x2

)(
1

2

)x1 (x1
15

)
,

x2 = 0, 1, . . . , x1
x1 = 0, 1, 2, 3, 4, 5,

zero elsewhere, be the joint pmf of X1 and X2. Determine

(a) E(X2)

Solution.

E(X2) =

5∑
x1=1

x1∑
x2=0

x2

(
x1
x2

)(
1

2

)x1 (x1
15

)

=

5∑
x1=1

[
x1∑

x2=1

(
x1 − 1

x2 − 1

)(
1

2

)x1−1
](x1

2

)(x1
15

)

=

5∑
x1=1

x21
30

=
5(6)(11)

6(30)
=

6

11
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since (
x1 − 1

x2 − 1

)(
1

2

)x1−1

, x2 = 1, . . . , x1

is the pmf of X2 ∼ Binomial(x1 − 1, 1/2).

(b) u(x1) = E(X2|x1).

Solution.

Find p(x2|x1) first.

p(x1) =

x1∑
x2=0

p(x1, x2) =

[
x1∑

x2=0

(
x1
x2

)(
1

2

)x1
](x1

15

)
=
x1
15

⇒ p(x2|x1) =
p(x1, x2)

p(x1)
=

(
x1
x2

)(
1

2

)x1

.

Hence,

u(x1) = E(X2|x1) =
x1∑

x2=0

x2

(
x1
x2

)(
1

2

)x1

=

x1∑
x2=1

(
x1 − 1

x2 − 1

)(
1

2

)x1−1
x1
2

=
x1
2
, x1 = 1, 2, 3, 4, 5.

(c) E[u(X1)].

Solution.

E[u(X1)] =
E(X1)

2
=

5∑
x1=1

x1
2
p(x1) =

5∑
x1=1

x21
30

=
11

6
,

which is the same as that in part (a) by the iterative expectation.

3.1.26. Three fair dice are cast. In 10 independent casts, let X be the number of times all three faces are
alike and let Y be the number of times only two faces are alike. Find the joint pmf of X and Y and compute
E(6XY ).

Solution.

The joint pmf of X and Y is a trinomial distribution with pX = 1
36 and pY = 15

36 . By 3.1.21,

Cov(X,Y ) = −npXpY = −10
1

36

15

36
= − 25

216
= E(XY )− E(X)E(Y ).

Hence,

E(XY ) = Cov(X,Y ) + E(X)E(Y ) = − 25

216
+

10

36

10(15)

36
=

25

24
⇒ E(6XY ) =

25

4
.

3.1.27. Let X have a geometric distribution. Show that

P (X ≥ k + j|X ≥ k) = P (X ≥ j),

where k and j are nonnegative integers. Note that we sometimes say in this situation that X is memoryless.

Solution.

Since the pmf of X is p(x) = p(1− p)x, 0 < p < 1, x = 0, 1, 2, ..., the cdf is

FX(x) = P (X ≤ x) =

x∑
k=0

p(1− p)k = 1− (1− p)x+1.
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Thus,

P (X ≥ k + j|X ≥ k) =
P (X ≥ k + j)

P (X ≥ k)
=

1− P (X ≤ k + j − 1)

1− P (X ≤ k − 1)
=

(1− p)k+j

(1− p)k
= (1− p)j = P (X ≥ j).

3.1.29. Let the independent random variables X1 and X2 have binomial distributions with parameters n1,
p1 = 1

2 and n2, p2 = 1
2 , respectively. Show that Y = X1−X2+n2 has a binomial distribution with parameters

n = n1 + n2, p =
1
2 .

Solution.

Since MX1
(t) = ( 12 + et

2 )
n1 and MX2

(t) = (12 + et

2 )
n2 ,

MY (t) =MX1(t)MX2(−t)en2t =

(
1

2
+
et

2

)n1
(
1

2
+
e−t

2

)n2

en2t =

(
1

2
+
et

2

)n1+n2

,

indicating that Y ∼ Binom(n1 + n2,
1
2 ).

3.1.30. Consider a shipment of 1000 items into a factory. Suppose the factory can tolerate about 5% defective
items. Let X be the number of defective items in a sample without replacement of size n = 10. Suppose the
factory returns the shipment if X ≥ 2.

(a) Obtain the probability that the factory returns a shipment of items that has 5% defective items.

Solution. P (X ≥ 2) = 1− P (X ≤ 1) = 1 - phyper(1, 50, 950, 10) = 0.0853.

(b) Suppose the shipment has 10% defective items. Obtain the probability that the factory returns such a
shipment.

Solution. 1 - phyper(1, 100, 900, 10) = 0.2637.

(c) Obtain approximations to the probabilities in parts (a) and (b) using appropriate binomial distributions.

Solution.

For part (a), 1 - pbinom(1, 10, 0.05) = 0.08613. For (b), 1 - pbinom(1, 10, 0.1) = 0.2639.

3.1.31. Show that the variance of a hypergeometric (N,D, n) distribution is given by expression (3.1.8).
Hint : First obtain E[X(X−1)] by proceeding in the same way as the derivation of the mean given in Section
3.1.3.

Solution.

E[X(X − 1)] =

n∑
x=0

x(x− 1)

(
D
x

)(
N−D
n−x

)(
N
n

) =
n(n− 1)D(D − 1)

N(N − 1)

n∑
x=2

(
D−2
x−2

)(
N−D
n−x

)(
N−2
n−2

) =
n(n− 1)D(D − 1)

N(N − 1)
.

Since we have E(X) = nD/N ,

Var(X) = E(X2)− [E(X)]2 = E[X(X − 1)] + E(X)− [E(X)]2

=
n(n− 1)D(D − 1)

N(N − 1)
+
nD

N
−

(
nD

N

)2

= n
D

N

N −D

N

N − n

N − 1
.

Note: Var(X) → np(1− p) as N → ∞, where p = D/N meaning that the hypergeometric approximates the
binomial when N is large.
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3.2 The Poisson Distribution

3.2.1. If the random variable X has a Poisson distribution such that P (X = 1) = P (X = 2), find P (X = 4).

Solution. P (X = 1) = P (X = 2) gives the parameter λ = 2. Hence, P (X = 4) = e−224

4! ≈ 0.09.

3.2.2. The mgf of a random variable X is e4(e
t−1). Show that P (µ− 2σ < X < µ+ 2σ) = 0.931.

Solution.

By the given mgf, λ = σ2 = 4. Hence, P (µ− 2σ < X < µ+2σ) = P (0 < X < 8) = P (X < 8)−P (X ≤ 0) =
P (X ≤ 7)− P (X = 0) = ppois(7, 4) - ppois(0, 4) = 0.9305.

3.2.3. In a lengthy manuscript, it is discovered that only 13.5 percent of the pages contain no typing errors.
If we assume that the number of errors per page is a random variable with a Poisson distribution, find the
percentage of pages that have exactly one error.

Solution.

Let X ∼ Poisson(λ). Then given that P (X = 0) = 0.135 ⇒ e−λ = 0.135 ⇒ λ = 2.002. Thus,

P (X = 1) =
e−2(2)1

1!
= 0.270.

3.2.4. Let the pmf p(x) be positive on and only on the nonnegative integers. Given that p(x) = (4/x)p(x−1),
x = 1, 2, 3, ..., find the formula for p(x).

Solution.

p(x) =
4

x
p(x− 1) = · · · = 4x

x!
p(0).

Also,

1 =

∞∑
x=0

p(x) = p(0)

∞∑
x=0

4x

x!
= p(0)e4 ⇒ P (0) = e−4 ⇒ P (x) =

e−44x

x!
.

That is X ∼ Poisson(4).

3.2.5. Let X have a Poisson distribution with µ = 100. Use Chebyshev’s inequality to determine a lower
bound for P (75 < X < 125). Next, calculate the probability using R. Is the approximation by Chebyshev’s
inequality accurate?

Solution.

By Chebyshev’s inequality,

P (75 < X < 125) = P (|X − 100| < 25) = 1− P (|X − 100| ≥ 25) ≥ 1− 100

252
=

21

25
= 0.84.

Using R,
P (75 < X < 125) = ppois(124, 100) - ppois(75, 100) = 0.9858.

So, the approximation by Chebyshev’s inequality is not so accurate in this case.

3.2.10. The approximation discussed in Exercise 3.2.8 can be made precise in the following way. Suppose
Xn is binomial with the parameters n and p = λ/n, for a given λ > 0. Let Y be Poisson with mean λ. Show
that P (Xn = k) → P (Y = k), as n→ ∞, for an arbitrary but fixed value of k.
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Solution.

P (Xn = k) =
n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k

=
λk

k!

n(n− 1) · · · (n− k + 1)

nk

(
1− λ

n

)−k (
1− λ

n

)n

=
λk

k!

n

n

n− 1

n
· · · n− k + 1

n

(
1− λ

n

)−k (
1− λ

n

)n

→ λk

k!
· 1k1−ke−λ = P (Y = k).

3.2.12. Compute the measures of skewness and kurtosis of the Poisson distribution with mean µ.

Solution.

Suppose X has the Poisson distribution with mean µ. Then the variance σ2 = µ and the mgf is

MX(t) = eµ(e
t−1) ⇒ ψ(t) = logMX(t) = µ(et − 1).

Hence, the skewness is

γ =
E(X − µ)3

σ3
=
ψ(3)(0)

µ1.5
=

µ

µ1.5
= µ−0.5.

Similarly, the kurtosis is

κ =
E(X − µ)4

σ4
=
ψ(4)(0)

µ2
=

µ

µ2
= µ−1.

3.2.13. On the average, a grocer sells three of a certain article per week. How many of these should he have
in stock so that the chance of his running out within a week is less than 0.01? Assume a Poisson distribution.

Solution.

Let X ∼ Poisson(3). Find the smallest x such that P (X > x) < 0.01 ⇔ P (X ≤ x) > 0.99. Since ppois(7,

3) = 0.988 and ppois(8, 3) = 0.996, x = 8.

3.2.15. Let X have a Poisson distribution with mean 1. Compute, if it exists, the expected value E(X!).

Solution.

E(X!) =

∞∑
x=0

x!
e−11x

x!
=

∞∑
x=0

e−1,

which indicates that E(X!) does not exist.

3.2.16. Let X and Y have the joint pmf p(x, y) = e−2/[x!(y − x)!], y = 0, 1, 2, ..., x = 0, 1, ..., y, zero
elsewhere.

(a) Find the mgf M(t1, t2) of this joint distribution.
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Solution.

M(t1, t2) = e−2
∞∑
y=0

et2y
y∑

x=0

et1x

[x!(y − x)!

= e−2
∞∑
y=0

et2y

y!

y∑
x=0

(
y

x

)
et1x1y−x

= e−2
∞∑
y=0

et2y

y!
[1 + et1 ]y

= e−2
∞∑
y=0

[et2(1 + et1)]y

y!

= e−2 exp[(1 + et1)et2 ]

= exp[et2 + et1+t2 − 2]

(b) Compute the means, the variances, and the correlation coefficient of X and Y .

Solution.

Let ψ(t1, t2) = logM(t1, t2) = et2 + et1+t2 − 2. Then

µX =
∂ψ(0, 0)

∂t1
= 1, µY =

∂ψ(0, 0)

∂t2
= 2

σ2
X =

∂2ψ(0, 0)

∂t21
= 1, σ2

Y =
∂2ψ(0, 0)

∂t22
= 2,

Cov(X,Y ) =
∂2ψ(0, 0)

∂t1t2
= 1 ⇒ ρ =

Cov(X,Y )

σXσY
=

1√
2
.

(c) Determine the conditional mean E(X|y).

Solution.

Since

p(y) =
e−2

y!

y∑
x=0

(
y

x

)
=
e−22y

y!
, y = 0, 1, 2, ... ⇒ Y ∼ Poisson(2),

the conditional pmf of X given Y = y is given by

p(x|y) = p(x, y)

p(y)
=

y!

x!(y − x)!

1

2y
=

1

2y

(
y

x

)
.

Hence,

E(X|y) =
y∑

x=0

x
1

2y

(
y

x

)
=

y

2y

y∑
x=1

(
y − 1

x− 1

)
=

y

2y
(1 + 1)y−1 =

y

2
, y = 0, 1, 2, . . . ,

zero elsewhere.

3.2.17. Let X1 and X2 be two independent random variables. Suppose that X1 and Y = X1 + X2 have
Poisson distributions with means µ1 and µ > µ1, respectively. Find the distribution of X2.

Solution.

Since X1 and X2 be two independent,

MY (t) =MX1(t)MX2(t) ⇒MX2(t) =
MY (t)

MX1(t)
=

eµ(e
t−1)

eµ1(et−1)
= e(µ−µ1)(e

t−1),

implying that X2 ∼ Poisson(µ− µ1).
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3.3 The Γ, χ2, and β Distribution

3.3.1. Supose (1− 2t)−6, t < 1
2 is the mgf of the random variable X.

(a) Use R to compute P (X < 5.23).

Solution.

Since X ∼ Γ(6, 2) or X ∼ χ2(12),

P (X < 5.23) = pgamma(5.23, 6, scale = 2) = pchisq(5.23, 12) = 0.501.

(b) Find the mean µ and variance σ2 of X. Use R to compute P (|X − µ| < 2σ).

Solution.

Since µ = 6(2) = 12 and σ2 = 6(2)2 = 24. Thus

P (|X − µ| < 2σ) = P (µ− 2σ < X < µ+ 2σ)

= P (12− 4
√
6 < X < 12 + 4

√
6)

= pchisq(12 + 4 * sqrt(6), 12) - pchisq(12 - 4 * sqrt(6), 12)

= 0.9592.

3.3.3. Suppose the lifetime in months of an engine, working under hazardous conditions, has a Γ distribution
with a mean of 10 months and a variance of 20 months squared.

(a) Determine the median lifetime of an engine.

Solution.

Since αβ = 10 and αβ2 = 20, α = 5 and β = 2. Hence, the median is qgamma(0.5, 5, scale = 2) =
9.342 months.

(b) Suppose such an engine is termed successful if its lifetime exceeds 15 months. In a sample of 10 engines,
determine the probability of at least 3 successful engines.

Solution.

The probability of a successful engine is p = P (X > 15) = 1 - pgamma(15, 5, scale = 2) = 0.1321.
Let Y ∼ Binomial(10, p), the probability of at least 3 successful engines is

P (Y ≥ 3) = 1− P (Y ≤ 2) = 1 - pbinom(2, 10, 0.1321) = 0.136.

3.3.4. Let X be a random variable such that E(Xm) = (m+ 1)!2m, m = 1, 2, 3, ... . Determine the mgf and
the distribution of X.

Solution.

By Taylor series, the mgf of X is given by

M(t) =

∞∑
m=0

M (m)(0)

m!
tm = 1 +

∞∑
m=1

E(Xm)

m!
tm = 1 +

∞∑
m=1

(m+ 1)(2t)m =

∞∑
m=0

(m+ 1)(2t)m,

which gives us

(1− 2t)M(t) =

∞∑
m=0

(2t)m =
1

1− 2t
, t <

1

2
.

Hence, M(t) = (1− 2t)−2. So, X ∼ Γ(2, 2) or X ∼ χ2(4).

3.3.6. Let X1, X2, and X3 be iid random variables, each with pdf f(x) = e−x, 0 < x <∞, zero elsewhere.
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(a) Find the distribution of Y = min(X1, X2, X3).

Solution.

We have the cdf of X is FX(x) = 1− e−x, x > 0. Thus, the cdf of Y is

FY (y) = P (Y ≤ y) = 1− P (Y > y) = 1− P (Xi > y, i = 1, 2, 3)

= 1− [P (X > y)]3 since X ′
is are iid

= 1− [1− FX(y)]3

= 1− e−3y.

Hence, the pdf of Y is fY (y) = 3e−3y, y > 0, zero elsewhere.

(b) Find the distribution of Y = max(X1, X2, X3).

Solution.

Similarly,

FY (y) = P (Y ≤ y) = P (Xi < y, i = 1, 2, 3)

= [P (X < y)]3 since X ′
is are iid

= [FX(y)]3

= (1− e−y)3, y > 0,

zero y ≤ 0. We do not have to show the pdf (not so simple form in this case).

3.3.7. Let X have a gamma distribution with pdf

f(x) =
1

β2
xe−x/β , 0 < x <∞,

zero elsewhere. If x = 2 is the unique mode of the distribution, find the parameter β and P (X < 9.49).

Solution.

Solving f ′(x) = 0, we obtain x = β = 2. Since α = 2, X ∼ Γ(2, 2) = χ2(4). Hence,

P (X < 9.49) = pgamma(9.49, 2, scale=2) = pchisq(9.49, 4) = 0.950.

3.3.8. Compute the measures of skewness and kurtosis of a Γ distribution that has parameters α and β.

Solution.

We have σ2 = αβ2. Since the mgf is given by M(t) = (1−βt)−α, let ψ(t) = logM(t) = −α log(1−βt). Then

ψ′(t) =
αβ

1− βt
, ψ′′(t) =

αβ2

(1− βt)2
, ψ(3)(t) =

2αβ3

(1− βt)3
, ψ(4)(t) =

6αβ4

(1− βt)4
.

Hence, the measures of skewness and kurtosis are, respectively,

γ =
ψ(3)(0)

σ3
=

2αβ3

(αβ2)3/2
=

2√
α
, κ =

ψ(4)(0)

σ4
=

6αβ4

(αβ2)2
=

6

α
.

3.3.10. Give a reasonable definition of a chi-square distribution with zero degrees of freedom.

Solution.

The mgf of X ∼ χ2(r) is MX(t) = (1− 2t)−r/2, t < 1
2 . Let r = 0, then M(t) = 1 ⇒ X = 0 ⇒ P (X = 0) = 1.

3.3.15. Let X have a Poisson distribution with parameter m. If m is an experimental value of a random
variable having a gamma distribution with α = 2 and β = 1, compute P (X = 0, 1, 2).
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Solution.

Given that

fX(x|m) =
e−mmx

x!
, x = 0, 1, 2, ... fM (m) =

1

Γ(2)12
me−m = me−m, m > 0.

Hence, the joint distribution of X and m and the marginal distribution of X are, respectively,

fX,m(x,m) = fX(x|m)fM (m) =
e−2mmx+1

x!

fX(x) =

∫ ∞

0

mx+1e−2m

x!
dm =

1

x!
Γ(x+ 2)

(
1

2

)x+2

=
x+ 1

2x+2
.

Hence,

P (X = 0, 1, 2) = fX(0) + fX(1) + fX(2) =
1

4
+

1

4
+

3

16
=

11

16
.

3.3.16. Let X have the uniform distribution with pdf f(x) = 1, 0 < x < 1, zero elsewhere. Find the cdf of
Y = −2 logX. What is the pdf of Y ?

Solution.

We have the cdf of X: FX(x) = x, 0 < x < 1. Hence, the cdf of Y is

FY (y) = P (−2 logX ≤ y) = P (X ≥ e−y/2) = 1− F (e−y/2) = 1− e−y/2, 0 < y <∞,

which gives the pdf of Y : fY (y) =
1
2e

−y/2, y > 0, zero elsewhere. That is Y ∼ Γ(1, 2) = χ2(2).

3.3.23. Let X1 and X2 be independent random variables. Let X1 and Y = X1 + X2 have chi-square
distributions with r1 and r degrees of freedom, respectively. Here r1 < r. Show that X2 has a chi-square
distribution with r − r1 degrees of freedom.

Solution.

Since X1 and X2 are independent,

MY (t) =MX1
(t)MX2

(t) ⇒ MX2
(t) =

MY (t)

MX1(t)
=

(1− 2t)−r/2

(1− 2t)−r1/2
= (1− 2t)−(r−r1)/2,

which gives X2 ∼ χ2(r − r1).

3.3.24. Let X1, X2 be two independent random variables having gamma distributions with parameters
α1 = 3, β1 = 3 and α2 = 5, β2 = 1, respectively.

(a) Find the mgf of Y = 2X1 + 6X2.

Solution. Since X1 ⊥ X2, MY (t) =MX1(2t)MX2(6t) = [1− 3(2t)]−3(1− 6t)−5 = (1− 6t)−8, t < 1
6 .

(b) What is the distribution of Y ?

Solution. Y ∼ Γ(8, 6).

3.3.26. Let X denote time until failure of a device and let r(x) denote the hazard function of X.

(a) If r(x) = cxb, where c and b are positive constants, show that X has a Weibull distribution; i.e.,

f(x) =

{
cxb exp

{
− cxb+1

b+1

}
0 < x <∞

0 elsewhere.

Solution.

Since r(x) = −(d/dx) log[1− F (x)], F (x) = 1− e−
∫ x
0

r(u)du and f(x) = r(x)e−
∫ x
0

r(u)du. Hence,∫ x

0

r(u)du =
cxb+1

b+ 1
⇒ f(x) = cxbe−

cxb+1

b+1 , 0 < x <∞.
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(b) If r(x) = cebx, where c and b are positive constants, show that X has a Gompertz cdf given by

F (x) =

{
1− exp

{
c
b (1− ebx)

}
0 < x <∞

0 elsewhere.

This is frequently used by actuaries as a distribution of the length of human life.

Solution. ∫ x

0

r(u)du = −c
b
(1− ebx) ⇒ F (x) = 1− e

c
b (1−ebx), 0 < x <∞.

(c) If r(x) = bx, linear hazard rate, show that the pdf of X is

f(x) =

{
bxe−bx2/2 0 < x <∞
0 elsewhere.

This pdf is called the Rayleigh pdf.

Solution. ∫ x

0

r(u)du =
bx2

2
⇒ f(x) = bxe−bx2/2, 0 < x <∞.

3.4 The Normal Distribution

3.4.1. If

Φ(z) =

∫ z

−∞

1√
2π
e−w2/2dw,

show that Φ(−z) = 1− Φ(z).

Solution.

Φ(−z) =
∫ −z

−∞

1√
2π
e−w2/2dw = 1−

∫ ∞

−z

1√
2π
e−w2/2dw = 1−

∫ z

−∞

1√
2π
e−(w′)2/2dw′ = 1− Φ(z)

where w′ = −w and so dw′ = −dw.

3.4.2. If X is N(75, 100), find P (X < 60) and P (70 < X < 100) by using either Table II or the R command
pnorm.

Solution.

P (X < 60) = P

(
X − 75

10
< −1.5

)
= Φ(−1.5) = 1− Φ(1.5) = 1− 0.9332 = 0.0668,

= pnorm(60, 75, 10) = 0.06681,

P (70 < X < 100) = Φ(2.5)− Φ(−0.5) = 0.9938− (1− 0.6915) = 0.6853,

= pnorm(100, 75, 10) - pnorm(70, 75, 10) = 0.68525.

3.4.3. If X is N(µ, σ2), find b so that P [−b < (X − µ)/σ < b] = 0.90, by using either Table II of Appendix
D or the R command qnorm.

Solution. b = 1.645.

3.4.5. Show that the constant c can be selected so that f(x) = c2−x2

, −∞ < x <∞, satisfies the conditions
of a normal pdf.

Solution.
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Since 2−x2

= e−x2 log 2 = ex
2/(1/ log 2), consider X ∼ N(0, 1

2 log 2 ). Then the pdf of X is

f(x) =
1√

2π 1
2 log 2

e−x2 log 2 =

√
log 2

π
e−x2 log 2, −∞ < x <∞.

Hence, c =
√

log 2
π .

3.4.6. If X is N(µ, σ2), show that E(|X − µ|) = σ
√

2/π.

Solution.

WLOG, µ = 0. Because of the symmetry of a normal pdf,

E(|X|) = 2

∫ ∞

0

x
1√
2πσ2

e−x2/(2σ2)dx =
2√
2πσ2

[
−σ2e−x2/(2σ2)

]∞
0

=
2σ2

√
2πσ2

= σ

√
2

π
.

3.4.8. Evaluate
∫ 3

2
exp[−2(x− 3)2]dx.

Solution.

Suppose X ∼ N(3, 1/4), the pdf of X is

f(x) =

√
2

π
e−2(x−3)2 .

Hence, ∫ 3

2

√
2

π
e−2(x−3)2dx = P (X ≤ 3)− P (X ≤ 2) = Φ(0)− Φ(−2) =

1

2
− Φ(−2)

⇒
∫ 3

2

exp[−2(x− 3)2]dx =

√
π

2

[
1

2
− Φ(−2)

]

3.4.10. If e3t+8t2 is the mgf of the random variable X, find P (−1 < X < 9).

Solution.

By the mgf, we have X ∼ N(3, 42). Hence,

P (−1 < X < 9) = P (−1 < Z < 1.5) = 0.7745,

= pnorm(9, 3, 4) - pnorm(-1, 3, 4) = 0.77454.

3.4.11. Let the random variable X have the pdf

f(x) =
2√
2π
e−x2/2, 0 < x <∞, zero elsewhere.

(a) Find the mean and the variance of X.

Solution.

E(X) =

∫ ∞

0

x
2√
2π
e−x2/2dx =

√
2

π
− e−x2/2

∣∣∣∞
0

=

√
2

π
,

E(X2) =

∫ ∞

0

x2
2√
2π
e−x2/2dx = · · · =

∫ ∞

0

2√
2π
e−x2/2dx = 1,

⇒ Var(X) = E(X2)− E(X)2 = 1− 2

π
.
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(b) Find the cdf and hazard function of X.

Solution.

FX(x) = 2

∫ x

0

1√
2π
e−u2/2du

= 2

(∫ x

−∞

1√
2π
e−u2/2du−

∫ 0

−∞

1√
2π
e−u2/2du

)
= 2[Φ(x)− 0.5] = 2Φ(x)− 1.

Also, let γ(x) denote the hazard function of X, then

γ(x) =
f(x)

1− FX(x)
=

f(x)

2[1− Φ(x)]
.

3.4.12. Let X be N(5, 10). Find P [0.04 < (X − 5)2 < 38.4].

Solution.

X − 5√
10

∼ N(0, 1) ⇒ (X − 5)2

10
∼ χ2(1).

Hence,

P [0.04 < (X − 5)2 < 38.4] = P

[
0.004 <

(X − 5)2

10
< 3.84

]
= pchisq(3.84, 1) - pchisq(0.004, 1) = 0.900.

3.4.13. If X is N(1, 4), compute the probability P (1 < X2 < 9).

Solution.

P (1 < X2 < 9) = P (−3 < X < −1) + P (1 < X < 3)

= P (−2 < Z < −1) + P (0 < Z < 1)

= pnorm(-1) - pnorm(-2) + pnorm(1) - pnorm(0)

= 0.4772.

3.4.15. Let X be a random variable such that E(X2m) = (2m)!/(2mm!), m = 1, 2, 3, ... and E(X2m−1) = 0,
m = 1, 2, 3, .... Find the mgf and the pdf of X.

Solution.

MX(t) =

∞∑
k=0

M (k)(0)

k!
tk =

∞∑
k=0

E(Xk)

k!
tk =

∞∑
m=0

E(X2m)

(2m)!
t2m +

∞∑
m=1

E(X2m−1)

(2m− 1)!
t2m−1 =

∞∑
m=0

( t
2

2 )
m

m!
= e

t2

2 .

Hence, X ∼ N(0, 1).

3.4.16. Let the mutually independent random variables X1, X2, and X3 be N(0, 1), N(2, 4), and N(−1, 1),
respectively. Compute the probability that exactly two of these three variables are less than zero.

Solution.

We have P (X1 < 0) = 0.5. Let P (X2 < 0) = Φ(−1) = a = 0.1587, then P (X3 < 1) = Φ(1) = 1 − a. The
desired probability is given by

P (X1 < 0)P (X2 < 0)P (X3 ≥ 0) + P (X1 < 0)P (X2 ≥ 0)P (X3 < 0) + P (X1 ≥ 0)P (X2 < 0)P (X3 < 0)

= 0.5a2 + 0.5(1− a)2 + 0.5a(1− a) = 0.5(a2 − a+ 1) = 0.433.
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3.4.17. Compute the measures of skewness and kurtosis of a distribution which is N(µ, σ2). See Exercises
1.9.14 and 1.9.15 for the definitions of skewness and kurtosis, respectively.

Solution.

Let γ and κ denote the skewness and kurtosis, respectively and Z ∼ N(0, 1). Then

γ =
E(X − µ)3

σ3
= E(Z3) =

∫ ∞

−∞
z3f(z)dz =

∫ ∞

0

z3f(z)dz +

∫ 0

−∞
z3f(z)dz = 0

because f(−z) = f(z). Next,

κ =
E(X − µ)4

σ4
= E(Z4) = Var(Z2) + [E(Z2)]2 = 2 + 12 = 3

because Z2 ∼ χ2(1).

3.4.19. Let the random variable X be N(µ, σ2). What would this distribution be if σ2 = 0?

Solution.

If σ2 = 0, the mgf of X will be M(t) = eµt ⇒ N(µ, 0). So X is degenerate at µ, or P (X = µ) = 1.

3.4.20. Let Y have a truncated distribution with pdf g(y) = ϕ(y)/[Φ(b) − Φ(a)], for a < y < b, zero
elsewhere, where ϕ(x) and Φ(x) are, respectively, the pdf and distribution function of a standard normal
distribution. Show then that E(Y ) is equal to [ϕ(a)− ϕ(b)]/[Φ(b)− Φ(a)].

Solution.

E(Y ) =

∫ b

a
yϕ(y)dy

Φ(b)− Φ(a)
=

∫ b

a
y 1√

2π
e−y2/2dy

Φ(b)− Φ(a)
=

[
− e−y2/2

√
2π

]b
a

Φ(b)− Φ(a)
=

ϕ(a)− ϕ(b)

Φ(b)− Φ(a)
.

3.4.22. Let X and Y be independent random variables, each with a distribution that is N(0, 1). Let
Z = X + Y . Find the integral that represents the cdf G(z) = P (X + Y ≤ z) of Z. Determine the pdf of Z.

Solution.

Since X and Y are independent, the joint pdf of the two r.v.s is

f(x, y) =
1

2π
e−(x2+y2)/2, −∞ < x, y <∞.

Hence,

G(z) =

∫ ∞

−∞

∫ z−x

−∞

1

2π
e−(x2+y2)/2dydx

⇒ G′(z) =

∫ ∞

−∞

[
∂

∂z

∫ z−x

−∞

1

2π
e−(x2+y2)/2dy

]
dx

=

∫ ∞

−∞

1

2π
e−(x2+(z−x)2)/2dx

=
1√
2π(2)

e−z2/4

∫ ∞

−∞

1√
2π(1/2)

e−(x− z
2 )

2

dx

=
1√
4π
e−z2/4,

which gives Z ∼ N(0, 2).

3.4.29. Let X1 and X2 be independent with normal distributions N(6, 1) and N(7, 1), respectively. Find
P (X1 > X2).
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Solution.

Since X1 −X2 ∼ N(−1, 2),

P (X1 > X2) = P (X1 −X2 > 0) = P

(
(X1 −X2)− (−1)√

2
>

1√
2

)
= 1− Φ(1/

√
2) = 0.240.

3.4.30. Compute P (X1 + 2X2 − 2X3 > 7) if X1, X2, X3 are iid with common distribution N(1, 4).

Solution.

Let Y = X1 + 2X2 − 2X3. Then

µY = E(X1 + 2X2 − 2X3) = 1 + 2− 2 = 1,

σ2
Y = Var(X1 + 2X2 − 2X3) = Var(X1) + 4Var(X2) + 4Var(X3) = 36,

so Y ∼ N(1, 62). Hence, P (Y > 7) = P (Z > 1) = 0.1586.

3.4.31. A certain job is completed in three steps in series. The means and standard deviations for the steps
are (in minutes)

Step Mean Standard Deviation
1 17 2
2 13 1
3 13 2

Assuming independent steps and normal distributions, compute the probability that the job takes less than
40 minutes to complete.

Solution.

Since X1 +X2 +X3 ∼ N(43, 9),

P (X1 +X2 +X3 < 40) = P

[
(X1 +X2 +X3)− 43

3
< −1

]
= Φ(−1) = 0.1586.

3.4.32. Let X be N(0, 1). Use the moment generating function technique to show that Y = X2 is χ2(1).

Solution.

MY (t) = E(etX
2

) =

∫ ∞

−∞

1√
2π
e−(1−2t)x2/2dx

= (1− 2t)−1/2

∫ ∞

−∞

1√
2π
e−w2/2dw

(
w = x

√
1− 2t

)
= (1− 2t)−1/2,

meaning that Y ∼ Γ(1/2, 2) = χ2(1).

3.4.33. Suppose X1, X2 are iid with a common standard normal distribution. Find the joint pdf of Y1 =
X2

1 +X2
2 and Y2 = X2 and the marginal pdf of Y1.

Solution.

The joint pdf of X1 and X2 is

fX1,X2(x1, x2) =
1

2π
e−(x2

1+x2
2)/2, −∞ < x1 <∞, −∞ < x2 <∞.
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The inverse functions are x1 = ±
√
y1 − y22 and x2 = y2 and then the Jacobian is J = (2

√
y1 − y22)

−1. Hence,

fY1,Y2(y1, y2) = fX1,X2(
√
y1 − y22 , y2)|J |+ fX1,X2(−

√
y1 − y22 , y2)|J |

=
1

2π
√
y1 − y22

e−y1/2, −√
y1 < y2 <

√
y1, 0 < y1 <∞

and the marginal pdf of Y1 is

fY1(y1) =
e−y1/2

2π

∫ √
y1

−√
y1

dy2√
y1 − y22

= · · · = e−y1/2

2

by transforming y2 =
√
y1 cos θ, 0 < θ < π. Thus, Y1 ∼ Γ(1, 2) = χ2(2).

3.5 The Multivariate Normal Distribution

3.5.1. Let X and Y have a bivariate normal distribution with respective parameters µx = 2.8, µy = 110,
σ2
x = 0.16, σ2

y = 100, and ρ = 0.6. Using R, compute:

(a) P (106 < Y < 124).

Solution.

Y ∼ N(110, 102), so P (106 < Y < 124) = P (−0.4 < Z < 1.4) = pnorm(1.4) - pnorm(-0.4) = 0.575.

(b) P (106 < Y < 124|X = 3.2).

Solution.

Y |X = 3.2 is normally distributed with the mean and variance:

E(Y |X = 3.2) = µy + ρ
σy
σx

(x− µx) = 110 + 0.6
10

0.4
(3.2− 2.8) = 116,

Var(Y |X = 3.2) = σ2
y(1− ρ2) = 100(1− 0.62) = 64 = 82.

Hence,

P (106 < Y < 124|X = 3.2) = P

(
−1.25 <

Y − 116

8
< 1.0

)
= pnorm(1) - pnorm(-1.25)

= 0.736.

3.5.2. Let X and Y have a bivariate normal distribution with parameters µ1 = 3, µ2 = 1, σ2
1 = 16, σ2

2 = 25,
and ρ = 3

5 . Using R, determine the following probabilities:

(a) P (3 < Y < 8).

Solution.

Y ∼ N(1, 52), so P (3 < Y < 8) = P (0.4 < Z < 1.4) = pnorm(1.4) - pnorm(0.4) = 0.264.

(b) P (3 < Y < 8|X = 7).

Solution.

Y |X = 7 is normally distributed with the mean and variance:

E(Y |X = 7) = µ2 + ρ
σ2
σ1

(x− µ1) = 1 + 0.6
5

4
(7− 3) = 4,

Var(Y |X = 7) = σ2
2(1− ρ2) = 25(1− (3/5)2) = 16 = 42.
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Hence,

P (3 < Y < 8|X = 7) = P

(
−0.25 <

Y − 4

4
< 1.0

)
= pnorm(1) - pnorm(-0.25)

= 0.440.

(c) P (−3 < X < 3).

Solution.

X ∼ N(3, 42), so P (−3 < X < 3) = P (−1.5 < Z < 0) = pnorm(0) - pnorm(-1.5) = 0.433.

(d) P (−3 < X < 3|Y = −4).

Solution.

X|Y = −4 is normally distributed with the mean and variance:

E(X|Y = −4) = µ1 + ρ
σ1
σ2

(y − µ2) = 3 + 0.6
4

5
(−4− 1) = 0.6,

Var(X|Y = −4) = σ2
1(1− ρ2) = 16(1− (3/5)2) = (16/5)2.

Hence,

P (−3 < X < 3|Y = −4) = P

(
−9

8
<
X − 0.6

3.2
<

3

4

)
= pnorm(3/4) - pnorm(-9/8)

= 0.643.

3.5.6. Let U and V be independent random variables, each having a standard normal distribution. Show
that the mgf E(et(UV )) of the random variable UV is (1− t2)−1/2, −1 < t < 1.

Solution.

Using iterative expectation, we obtain E(etUV ) = EV [EU (e
tUV |V )]. First, consider V = v (fixed):

E[et(UV )|V = v] = E[e(tv)U ] =MU (vt) = e
v2t2

2 .

Hence,

E(etUV ) = EV [EU (e
tUV |V )] = E(e

t2V 2

2 ) =

∫ ∞

−∞

1√
2π
e−(1−t2)v2/2dv = (1− t2)−1/2, −1 < t < 1.

3.5.11. Let X, Y , and Z have the joint pdf(
1

2π

)3/2

exp

(
−x

2 + y2 + z2

2

)[
1 + xyz exp

(
−x

2 + y2 + z2

2

)]
,

where −∞ < x <∞, −∞ < y <∞, −∞ < z <∞, While X, Y , and Z are obviously dependent, show that
X, Y , and Z are pairwise independent and that each pair has a bivariate normal distribution.

Solution.
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The joint pdf of X and Y is given by

fX,Y (x, y) =

∫ ∞

−∞

(
1

2π

)3/2

exp

(
−x

2 + y2 + z2

2

)[
1 + xyz exp

(
−x

2 + y2 + z2

2

)]
dz

=

∫ ∞

−∞

(
1

2π

)3/2

exp

(
−x

2 + y2 + z2

2

)
dz +

∫ ∞

−∞

(
1

2π

)3/2

xyz exp
[
−(x2 + y2 + z2)

]
dz

=

(
1

2π

)
exp

(
−x

2 + y2

2

)∫ ∞

−∞

1√
2π
e−z2/2dz −

(
1

2π

)3/2 xy exp
[
−(x2 + y2 + z2)

]
2

∣∣∣∞
−∞

=

(
1

2π

)
exp

(
−x

2 + y2

2

)
− 0

=
1√
2π
e−x2/2 1√

2π
e−y2/2,

which gives the desired result.

3.5.12. Let X and Y have a bivariate normal distribution with parameters µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, and
correlation coefficient ρ. Find the distribution of the random variable Z = aX + bY in which a and b are
nonzero constants.

Solution.

Since Z is written as

Z =
[
a b

] [X
Y

]
= AX,

by Theorem 3.5.2, Z ∼ N1(Aµ,AΣA′), where

Aµ =
[
a b

] [0
0

]
= 0,

AΣA′ =
[
a b

] [ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

] [
a
b

]
=

[
a b

] [1 ρ
ρ 1

] [
a
b

]
= (a2 + b2)(1 + ρ).

Thus, Z ∼ N(0, (a2 + b2)(1 + ρ)).

3.5.16. Suppose X is distributed N2(µ,Σ). Determine the distribution of the random vector (X1+X2, X1−
X2). Show that X1 +X2 and X1 −X2 are independent if Var(X1) = Var(X2).

Solution.

Since Y ≡ (X1 +X2, X1 −X2)
′ is written as

Y =

[
1 1
1 −1

] [
X1

X2

]
= AX,

by Theorem 3.5.2, Y ∼ N2(Aµ,AΣA′), where the variance is

AΣA′ =

[
1 1
1 −1

] [
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

] [
1 1
1 −1

]
=

[
σ2
1 + 2ρσ1σ2 + σ2

2 σ2
1 − σ2

2

σ2
1 − σ2

2 σ2
1 − 2ρσ1σ2 + σ2

2

]
.

Hence, if σ2
1 = σ2

2 or Var(X1) = Var(X2) = σ2, then

AΣA′ =

[
2σ2(1 + ρ) 0

0 2σ2(1− ρ)

]
,
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indicating that X1 +X2 ∼ N(µ1 + µ2, 2σ
2(1 + ρ)) and X1 −X2 ∼ N(µ1 − µ2, 2σ

2(1− ρ)) are independent.

3.5.22. Readers may have encountered the multiple regression model in a previous course in statistics. We
can briefly write it as follows. Suppose we have a vector of n observations Y which has the distribution
Nn(Xβ, σ2I), where X is an n × p matrix of known values, which has full column rank p, and β is a p × 1
vector of unknown parameters. The least squares estimator of β is

β̂ = (X′X)−1X′Y.

(a) Determine the distribution of β̂.

Solution.

Since (X′X)−1X′ is fixed, by the theorem 3.5.2, β̂ has a normal distribution with the mean and variance,
respectively:

E(β̂) = (X′X)−1X′E(Y) = (X′X)−1X′Xβ = β,

Var(β̂) = (X′X)−1X′Var(Y )X(X′X)−1 = σ2(X′X)−1.

(b) Let Ŷ = Xβ̂. Determine the distribution of Ŷ.

Solution.

As with part (a), Ŷ is also normally distributed with

µ = XE(β̂) = Xβ,

σ2 = XVar(β)X′ = σ2X(X′X)−1X′.

(c) Let ê = Y − Ŷ. Determine the distribution of ê.

Solution.

By part (b), we see that ê also follows a normal distribution with

µ = E(Y)− E(Ŷ) = 0,

σ2 = Var(Y) + Var(Ŷ) = σ2(I+X(X′X)−1X′)

since Y and Ŷ are independent.

(d) By writing the random vector (Ŷ′, ê′)′ as a linear function of Y, show that the random vectors Ŷ and
ê are independent.

Solution.

Z =

[
Ŷ
ê

]
=

[
Y − ê

ê

]
=

[
1′
n

0′
n

]
Y −

[
1′
n

−1′
n

]
ê.

Hence, by the theorem 3.5.2, the variance-covariance matrix is[
1′
n

0′
n

]
Var(Y)

[
1n 0n

]
= σ2

[
n 0
0 0

]
,

which implies that Ŷ and ê are independent because the covariances are zero.

(e) Show that β̂ solves the least squares problem; that is,

||Y −Xβ̂||2 min
b∈Rp

||Y −Xb||2.
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Solution.

||Y −Xβ̂||2 = (Y −Xβ̂)′(Y −Xβ̂)

= ||Y||2 − 2Y′Xβ̂ + β̂
′
X′Xβ̂

Then, the derivative of this with respect to β is

∂

∂β
||Y −Xβ̂||2 = 0− 2X′Y + 2X′Xβ̂.

Solving that this equals zero, we obtain X′Xβ̂ = X′Y. Given that X is full rank (nonsingular), the

inverse of X′X exists. Therefore, β̂ = (X′X)−1X′Y.

3.6. t- and F -Distributions

3.6.1. Let T have a t-distribution with 10 degrees of freedom. Find P (|T | > 2.228) from either Table III or
by using R.

Solution. Since t-distribution is symmetric and pt(-2.228, 10) = 0.025, P (|T | > 2.228) = 0.05.

3.6.2. Let T have a t-distribution with 14 degrees of freedom. Determine b so that P (−b < T < b) = 0.90.
Use either Table III or by using R.

Solution. Since t-distribution is symmetric, find P (T > b) = 0.05. b = qt(0.95, 14) = 1.761.

3.6.6. In expression (3.4.13), the normal location model was presented. Often real data, though, have
more outliers than the normal distribution allows. Based on Exercise 3.6.5, outliers are more probable for
t-distributions with small degrees of freedom. Consider a location model of the form

X = µ+ e,

where e has a t-distribution with 3 degrees of freedom. Determine the standard deviation σ of X and then
find P (|X − µ| ≥ σ).

Solution.

σ2 = Var(e) =
r

r − 2
= 3 ⇒ σ =

√
3.

Hence, P (|X − µ| ≥ σ) = P (|e| ≥
√
3) = 2 * pt(-sqrt(3), 3) = 0.1817.

3.6.9. Let F have an F -distribution with parameters r1 and r2. Argue that 1/F has an F-distribution with
parameters r2 and r1.

Solution.

Let U ∼ χ2(r1) and V ∼ χ2(r2),

F =
U/r1
V/r2

∼ F (r1, r2) ⇒ 1

F
=
V/r2
U/r1

∼ F (r2, r1),

which is the desired result.

3.6.10. Suppose F has an F-distribution with parameters r1 = 5 and r2 = 10. Using only 95th percentiles
of F-distributions, find a and b so thatP (F ≤ a) = 0.05 and P (F ≤ b) = 0.95, and, accordingly, P (a < F <
b) = 0.90.

Solution. a = qf(0.05, 5, 10) = 0.211 and b = qf(0.95, 5, 10) = 3.326.

3.6.11. Let T = W/
√
V/r, where the independent variables W and V are, respectively, normal with mean

zero and variance 1 and chi-square with r degrees of freedom. Show that T 2 has an F -distribution with
parameters r1 = 1 and r2 = r.
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Solution.

Since W 2 ∼ χ2(1),

T 2 =
W 2/1

V/r
∼ F (1, r).

3.6.12. Show that the t-distribution with r = 1 degree of freedom and the Cauchy distribution are the same.

Solution.

Substituting r = 1 to the pdf of T :

f(t) =
Γ[(r + 1)/2]√
πrΓ(r/2)

1

(1 + t2/r)(r+1)/2

=
Γ(1)√
πΓ(1/2)

1

(1 + t2)

=
1

π(1 + t2)
since Γ(1/2) =

√
π,

provided −∞ < t <∞. This is a pdf of the Cauchy distribution.

3.6.14. Show that

Y =
1

1 + (r1/r2)W

where W has an F -distribution with parameters r1 and r2, has a beta distribution.

Solution.

Let U ∼ χ2(r1) = Γ(r1/2, 2) and V ∼ χ2(r2) = Γ(r2/2, 2), then Since W = (U/r1)/(V/r2),

Y =
1

1 + U/V
=

V

V + U
,

indicating Y ∼ Beta(r2/2, r1/2).

3.6.15. Let X1, X2 be iid with common distribution having the pdf f(x) = e−x, 0 < x <∞, zero elsewhere.
Show that Z = X1/X2 has an F -distribution.

Solution.

Since Xi ∼ Γ(1, 1), let Yi = 2Xi, i = 1, 2, then the mgf of Y is

MYi
(t) =MXi

(2t) = (1− 2t)−1, t <
1

2
,

which means that Yi ∼ Γ(1, 2), or Yi ∼ χ2(2). Hence,

X1

X2
=
Y1/2

Y2/2
∼ F (2, 2).
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