
Exercises in Introduction to Mathematical Statistics (Ch. 6)

Tomoki Okuno

September 14, 2022

Note

• Not all solutions are provided: Exercises that are too simple or not very important to me are skipped.

• Texts in red are just attentions to me. Please ignore them.

6 Maximum Likelihood Method

6.1 Maximum Likelihood Estimation

6.1.1. Let X1, X2, ..., Xn be a random sample on X that has a Γ(α = 4, β = θ) distribution, 0 < θ < ∞.

(a) Determine the mle of θ.

Solution.

ℓ(θ) =
∑
i

[− log Γ(4)− 4 log θ − 3 log xi − xi/θ],

ℓ′(θ) =
∑
i

[−4/θ + xi/θ
2] = n(−4θ + x)/θ2,

ℓ′′(θ) =
∑
i

[4/θ2 − 2xi/θ
3].

Solving ℓ′(θ) = 0 obtains θ = x/4. Then ℓ′′(x/4) < 0. Hence the mle of θ is θ̂ = X/4.

(b) Suppose the following data is a realization (rounded) of a random sample on X. Obtain a histogram
with the argument pr=T (data are in ex6111.rda).

9 39 38 23 8 47 21 22 18 10 17 22 14

9 5 26 11 31 15 25 9 29 28 19 8

Solution. Skipped.

(c) For this sample, obtain θ̂ the realized value of the mle and locate 4θ̂ the histogram. Overlay the
Γ(α = 4, β = θ) pdf on the histogram. Does the data agree with this pdf? Code for overlay:

xs=sort(x);y=dgamma(xs,4,1/betahat);hist(x,pr=T);lines(y xs).

Solution. Since x = 20.12, θ̂ = 20.12/4 = 5.03. Graphs are skipped.

6.1.2. Let X1, X2, ..., Xn represent a random sample from each of the distributions having the following pdfs:

(a) f(x; θ) = θxθ−1, 0 < x < 1, 0 < θ < ∞, zero elsewhere.
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Solution.

ℓ(θ) =
∑
i

[log θ + (θ − 1) log xi],

ℓ′(θ) =
∑
i

[1/θ + log xi] = n/θ + log
∏

xi,

ℓ′′(θ) = −n/θ2 < 0.

Solving ℓ′(θ) = 0, therefore, we obtain θ̂ = −n/ log
∏

i xi

(b) f(x; θ) = e−(x−θ), θ ≤ x < ∞, −∞ < θ < ∞, zero elsewhere. Note that this is a nonregular case.

Solution.

L(θ) =

{
e−

∑
(xi−θ) θ ≤ xi, i = 1, ..., n

0 otherwise
=

{
e−n(x−θ) θ ≤ x(1)

0 otherwise

Since L′(θ) = ne−n(x−θ) > 0, L(θ) is strictly increasing, indicating that θ that maximizes L(θ) is x(1).

Hence, the mle of θ is θ̂ = X(1).

6.1.3. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample from a distribution with pdf
f(x; θ) = 1, θ − 1

2 ≤ x ≤ θ + 1
2 , −∞ < θ < ∞, zero elsewhere. This is a nonregular case. Show that every

statistic u(X1, X2, ..., Xn) such that

Yn − 1

2
≤ u(X1, X2, ..., Xn) ≤ Y1 +

1

2

is a mle of θ. In particular, (4Y1 + 2Yn + 1)/6, (Y1 + Yn)/2, and (2Y1 + 4Yn − 1)/6 are three such statistics.
Thus, uniqueness is not, in general, a property of mles.

Solution.

L(θ;x) = 1 (constant) if

θ − 1

2
≤ Y1 and Yn ≤ θ +

1

2
⇒ Yn − 1

2
≤ θ ≤ Y1 +

1

2
,

zero elsewhere. Thus, θ that maximizes L(θ) is inside [Yn − 1/2, Y1 − 1/2]. That is, let θ̂ = u(X1, ..., Xn),

Yn − 1

2
≤ u(X1, ..., Xn) ≤ Y1 +

1

2
.

For (4Y1 + 2Yn + 1)/6,

4Y1 + 2Yn + 1

6
−
(
Yn − 1

2

)
=

4(Y1 − Yn + 1)

6
≥ 0,(

Y1 +
1

2

)
− 4Y1 + 2Yn + 1

6
=

2(Y1 − Yn + 1)

6
≥ 0.

because Yn − Y1 ≤ 1. So do the other two statistics.

6.1.4. Suppose X1, ..., Xn are iid with pdf f(x; θ) = 2x/θ2, 0 < x ≤ θ, zero elsewhere. Note this is a
nonregular case. Find:

(a) The mle θ̂ for θ.

Solution.

L(θ) =

{
2n

∑
i xi

θ2n 0 < xi ≤ θ, i = 1, ..., n

0 otherwise

Since L′(θ) < 0, L(θ) is strictly decreasing for θ ≥ x(n) = yn. So, θ that maximizes L(θ) is yn. Hence,

the mle of θ is θ̂ = Yn.
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(b) The constant c so that E(cθ̂) = θ.

Solution.

By the theorem of pdf of the order statistic,

fYn
(y) = n[FX(y)]n−1fX(y) =

2ny2n−1

θ2n
.

Hence,

E(cθ̂) =

∫ θ

0

cyfYn
(y)dy =

∫ θ

0

2cny2n

θ2n
dy =

2n

2n+ 1
cθ ⇒ c =

2n+ 1

2n
.

(c) The mle for the median of the distribution. Show that it is a consistent estimator.

Solution.

Solving FX(x) = 1/2, we obtain θ/
√
2. Hence, the mle for the median is Yn/

√
2. Also,

E(Yn) =

∫ θ

0

2ny2n

θ2n
dy =

2n

2n+ 1
θ → θ as n → ∞,

which implies that Yn/
√
2 is a consistent estimator by invariance of MLE.

6.1.5. Consider the pdf in Exercise 6.1.4.

(a) Using Theorem 4.8.1, show how to generate observations from this pdf.

Solution.

Recall FX(x) = x2/θ2. Let u = F (x) then x = F−1(u) = θ
√
u, θ > 0. Hence, suppose U ∼ U(0, 1), we

would use X = F−1(U) = θU1/2 to generate observations.

(b) The following data were generated from this pdf. Find the mles of θ and the median.

1.2 7.7 4.3 4.1 7.1 6.3 5.3 6.3 5.3 2.8

3.8 7.0 4.5 5.0 6.3 6.7 5.0 7.4 7.5 7.5

Solution. θ̂ = Yn = 7.7, m̂ = Yn/
√
2 = 7.7/

√
2 = 5.44.

6.1.6. Suppose X1, X2, ..., Xn are iid with pdf f(x; θ) = (1/θ)e−x/θ, 0 < x < ∞, zero elsewhere. Find the
mle of P (X ≤ 2) and show that it is consistent.

Solution.

Assume θ ̸= 0. Since X1, . . . , Xn are iid with pdf f(x; θ) = e−x/θ/θ,

ℓ(θ) = logL(θ) = −
∑
i

xi/θ − n log θ

ℓ′(θ) =

∑
i xi

θ2
− n

θ
.

Solving ℓ′(θ) = 0, we obtain θ = 1
n

∑
i xi = x. Hence, the MLE for θ is θ̂ = X. For the second derivative,

d2ℓ(θ)

dθ2
=

−2
∑

i xi

θ3
+

n

θ2
=

n(θ − 2x)

θ3

⇒ d2ℓ(θ̂)

dθ2
=

n(θ̂ − 2x)

θ3
= −nx

θ3
< 0.

Since

P (X ≤ 2) =

∫ 2

0

e−x/θ/θdx = −e−x/θ
∣∣∣2
0
= 1− e−2/θ,
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̂P (X ≤ 2) = 1− e−2/θ̂ = 1− e−2/X by invariance of MLE. Moreover,

E(X) =

∫ ∞

0

xe−x/θ

θ
dx = Γ(2)θ = θ,

which provides θ̂ = X
P→ E(X) = θ by WLLN. Hence, let g(x) = 1− e−2/x (continuous for x > 0),

1− e−2/X = g(X)
P→ g(θ) = 1− e−2/θ

by g function. That is, ̂P (X ≤ 2) is consistent for P (X ≤ 2).

6.1.7. Let the table

x 0 1 2 3 4 5
Frequency 6 10 14 13 6 1

represent a summary of a sample of size 50 from a binomial distribution having n = 5. Find the mle of
P (X ≥ 3). For the data in the table, using the R function pbinom determine the realization of the mle.

Solution.

Let p denote a parameter of the Binomial distribution.

f(x; p) = P (X = x) =

(
5

x

)
px(1− p)50−x, x = 0, 1, 2, ..., 5.

We know that the mle of p is p̂ = X/50. By invariance of mle, the mle of P (X ≥ 3) is

̂P (X ≥ 3) =

5∑
i=3

(
5

x

)
p̂x(1− p̂)50−x.

From the table,

p̂ =
x

50
=

0(6) + 1(10) + 2(14) + 3(13) + 4(6) + 5(1)

5(50)
=

106

250
= 0.424.

Hence, the desired realization is

̂P (X ≥ 3) = 1 - pbinom(2, 5, 0.424) = 0.3597.

6.1.9. Let the table

x 0 1 2 3 4 5
Frequency 7 14 12 13 6 3

represent a summary of a random sample of size 55 from a Poisson distribution. Find the maximum likelihood
estimator of P (X = 2). Use the R function dpois to find the estimator’s realization for the data in the table.

Solution.

Let θ denote a parameter of the Poisson distribution.

f(x; θ) = P (X = x) =
e−θθx

x!
, x = 0, 1, 2, ....

The previous exercise shows that the mle of θ is θ̂ = X. By invariance of mle, the mle of P (X = 2) is

̂P (X = 2) =
e−XX

2

2
.
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From the table, θ̂’s realization is

x =
0(7) + 1(14) + 2(12) + 3(13) + 4(6) + 5(3)

55
=

116

55
= 2.11.

Hence, the desired realization is

̂P (X = 2) =
e−2.11(2.11)2

2
= dpois(2, 2.11) = 0.2699

6.1.10. Let X1, X2, ..., Xn be a random sample from a Bernoulli distribution with parameter p. If p is
restricted so that we know that 1

2 ≤ p ≤ 1, find the mle of this parameter.

Solution.

ℓ(p) =
∑

[xi log p+ (1− xi) log(1− p)],

ℓ′(p) =
∑

[xi/p− (1− xi)/(1− p)] =
n(x− p)

p(1− p)
,

ℓ′′(p) =
∑

[−xi/p
2 − (1− xi)/(1− p)2] < 0.

Solving ℓ′(p) gets p = x < 1. But we need to consider the restriction: 1
2 ≤ p ≤ 1. If x ≥ 1/2, the mle of p is

X, while the mle of p is 1/2 if x < 1/2 since ℓ(p) is decreasing for p ≥ 1/2. That is, p̂ = max(1/2, X).

6.1.12. Let X1, X2, ..., Xn be a random sample from the Poisson distribution with 0 < θ ≤ 2. Show that the
mle of θ is θ̂ = min{X, 2}.

Solution.

We know that the mle of θ, parameter for a Poisson distribution, is X if θ > 0. In this case, θ is restricted
to ≤ 2. Since L(θ;x) is increasing if θ < X, it maximizes at θ = 2 if X > 2, which gives θ̂ = min{X, 2}.

6.1.13. Let X1, X2, ..., Xn be a random sample from a distribution with one of two pdfs. If θ = 1, then
f(x; θ = 1) = 1

2π e
−x2/2, −∞ < x < ∞. If θ = 2, then f(x; θ = 2) = 1/[π(1 + x2)], −∞ < x < ∞. Find the

mle of θ.

Solution.

θ̂ =


1 L(θ = 1;x) > L(θ = 2;x)

1, 2 L(1) = L(2)

2 L(1) < L(2).

6.2. Rao–Cramer Lower Bound and Efficiency

6.2.1. Prove that X, the mean of a random sample of size n from a distribution that is N(θ, σ2), −∞ < θ <
∞, is, for every known σ2 > 0, an efficient estimator of θ.

Solution.

log f(x; θ) = − log
√
2πσ2 − (x− θ)2

2σ2

∂ log f(x; θ)

∂θ
=

x− θ

σ2
,

∂2 log f(x; θ)

∂θ2
= − 1

σ2

⇒ I(θ) = −E

[
∂2 log f(X; θ)

∂θ2

]
=

1

σ2
.

Hence, the CRLB is 1/(nI(θ)) = σ2/n. Since X is unbiased for θ, Var(X) = σ2/n attains the CRLB, which
means that X is an efficient estimator of θ.
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6.2.2. Given f(x; θ) = 1/θ, 0 < x < θ, zero elsewhere, with θ > 0, formally compute the reciprocal of

nE

{[
∂ log f(X : θ)

∂θ

]2}
.

Compare this with the variance of (n + 1)Yn/n, where Yn is the largest observation of a random sample of
size n from this distribution. Comment.

Solution.

Note that this is a non-regular case.

nE

{[
∂ log f(X : θ)

∂θ

]2}
=

n

θ2
.

Thus, the reciprocal is θ2/n. By the theorem of the order statistic,

fYn
(y) = nFX(y)fX(y) =

nyn−1

θn

⇒ E(Yn) = · · · = n

n+ 1
θ, E(Y 2

n ) = · · · = n

n+ 2
θ2,

⇒ Var(Yn) = E(Y 2
n )− E(Yn)

2 =
n

(n+ 1)2(n+ 2)
θ2.

Hence,

Var

(
n+ 1

n
Yn

)
=

(n+ 1)2

n2
Var (Yn) =

θ2

n(n+ 2)
<

θ2

n
,

which indicates that the variance violates CRLB because of the non-regular case.

6.2.7. Recall Exercise 6.1.1 where X1, X2, ..., Xn is a random sample on X that has a Γ(α = 4, β = θ)
distribution, 0 < θ < ∞.

(a) Find the Fisher information I(θ).

Solution.

log f(x; θ) = K − 4 log θ + 3 log x− x/θ

∂ log f(x; θ)

∂θ
= −4/θ + x/θ2,

∂2 log f(x; θ)

∂θ2
= 4/θ2 − 2x/θ3

⇒ I(θ) = −E

[
∂2 log f(x; θ, σ2)

∂θ2

]
=

2E(X)

θ3
− 4

θ2
=

4

θ2
.

(b) Show that the mle of θ, which was derived in Exercise 6.1.1, is an efficient estimator of θ.

Solution.

The mle of θ is θ̂ = X/4. Since E(θ̂) = E(X/4) = θ and

Var(θ̂) = Var(X/4) = Var(X)/16 = θ2/4n = 1/nI(θ),

θ̂ is an efficient estimator of θ.

(c) Using Theorem 6.2.2, obtain the asymptotic distribution of
√
n(θ̂ − θ).

Solution. By the asymptotic distribution of MLE,
√
n(θ̂ − θ)

D→ N(0, θ2/4).
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(d) For the data of Exercise 6.1.1, find the asymptotic 95% confidence interval for θ.

Solution.

√
n(θ̂ − θ)

θ/2

D→ N(0, 1) ⇒
√
n(θ̂ − θ)

θ̂/2
=

√
n(θ̂ − θ)

θ/2

θ

θ̂

D→ N(0, 1) by WLLN and Slutsky.

Hence,

0.95 = P

(
−1.96 <

√
n(θ̂ − θ)

θ̂/2
< 1.96

)
= P

(
θ̂ − 0.98θ̂√

n
< θ < θ̂ +

0.98θ̂√
n

)
,

which gives us the asymptotic 95% confidence interval for θ:

θ̂ ± 0.98θ̂√
n

= θ̂

(
1± 0.98√

n

)
= 5.03

(
1± 0.98√

25

)
= (4.04, 6.02).

because We obtained θ̂ = 5.03 in Exercise 6.1.1.

6.2.8. Let X be N(0, θ), 0 < θ < ∞.

(a) Find the Fisher information I(θ).

Solution.

log f(x; θ) = −1

2
log 2πθ − x2

2θ
∂ log f(x; θ)

∂θ
= − 1

2θ
+

x2

2θ2
,

∂2 log f(x; θ)

∂θ2
=

1

2θ2
− x2

θ3

⇒ I(θ) = −E

[
∂2 log f(x; θ)

∂θ2

]
= − 1

2θ2
+

E(X2)

θ3
=

1

2θ2

because E(X2) = Var(X) = θ.

(b) If X1, X2, ..., Xn is a random sample from this distribution, show that the mle of θ is an efficient
estimator of θ.

Solution.

Solving ℓ′(θ) = 0, we obtain the mle of θ: θ̂ = 1
n

∑
i X

2
i . Since Xi/

√
θ ∼ N(0, 1) ⇒

∑
X2

i /θ ∼ χ2(n),
Var(

∑
X2

i /θ) = 2n, or Var(
∑

X2
i ) = 2nθ2. Hence

Var(θ̂) = V ar

(
1

n

∑
i

X2
i

)
=

Var(
∑

i X
2
i )

n2
=

2θ2

n
=

1

nI(θ)
,

meaning that θ̂ is an efficient estimator of θ.

(c) What is the asymptotic distribution of
√
n(θ̂ − θ)?

Solution. By the asymptotic distribution of MLE,
√
n(θ̂ − θ)

D→ N(0, 2θ2).

6.2.11. Let X be the mean of a random sample of size n from a N(θ, σ2) distribution, −∞ < θ < ∞, σ2 > 0.

Assume that σ2 is known. Show that X
2 − σ2

n is an unbiased estimator of θ2 and find its efficiency.

Solution.

E(X
2
) = Var(X) + [E(X)]2 =

σ2

n
+ θ2 ⇒ E

(
X

2 − σ2

n

)
= θ2.
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For the Fisher information, let θ2 = µ,

∂2 log f(x, µ)

∂µ2
= · · · = − x

2σ2µ
.

Hence,

I(µ) = −E

[
∂2 log f(X,µ)

∂µ2

]
=

E(X)

2σ2µ
=

1

2σ2√µ
⇒ I(θ2) =

1

2σ2θ
.

Since E
(
X

2 − σ2

n

)
= θ2, the CRLB of the variance of X

2 − σ2

n is

Var

(
X

2 − σ2

n

)
= Var(X

2
) ≥ 2θ

nI(θ2)
=

4σ2θ2

n
.

Finally, compute Var(X
2
). [√

n(X − θ)

σ

]2
=

n(X − θ)2

σ2
∼ χ2(1)

⇒ Var

(
n(X − θ)2

σ2

)
=

n2

σ4
Var[(X − θ)2] = 2

⇒ Var[(X − θ)2] = Var(X
2
) + 4θ2Var(X) =

2σ4

n2

⇒ Var(X
2
) =

2σ4

n2
− 4θ2Var(X) =

2σ4

n2
− 4σ2θ2

n
.

Thus, the efficacy is

1/(nI(θ2))

Var(X)
=

4σ2θ2

n
2σ4

n2 − 4σ2θ2

n

,

which converges to −1 as n → ∞. Note that it should be incorrect.

6.2.12. Recall that θ̂ = −n/
∑n

i=1 logXi is the mle of θ for a beta(θ, 1) distribution. Also,W = −
∑n

i=1 logXi

has the gamma distribution Γ(n, 1/θ).

(a) Show that 2θW has a χ2(2n) distribution.

Solution.

Since MW (t) = (1− t/θ)−n, M2θW (t) = MW (2θt) = (1− 2t)−n, indicating 2θW ∼ χ2(2n).

(b) Using part (a), find c1 and c2 so that

P

(
c1 <

2θn

θ̂
< c2

)
= 1− α,

for 0 < α < 1. Next, obtain a (1− α)100% confidence interval for θ.

Solution.

Since θ̂ = −n/
∑n

i=1 logXi = n/W ,

1− α = P
(
χ2
2n,α/2 < 2θW < χ2

2n,1−α/2

)
= P

(
χ2
2n,α/2 <

2θn

θ̂
< χ2

2n,1−α/2

)
= P

(
θ̂χ2

2n,α/2

2n
< θ <

θ̂χ2
2n,1−α/2

2n

)
.
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Hence, c1 = χ2
2n,α/2 and c2 = χ2

2n,1−α/2. Also, a (1− α)100% confidence interval for θ is[
θ̂χ2

2n,α/2

2n
,
θ̂χ2

2n,1−α/2

2n

]
.

(c) For α = 0.05 and n = 10, compare the length of this interval with the length of the interval found in
Example 6.2.6.

Solution.

The length of this interval is

θ̂χ2
20,0.975

20
−

θ̂χ2
20,0.025

20
=

θ̂(34.17)

20
− θ̂(9.59)

20
= 1.22θ̂.

On the other hand, the length found in Example 6.2.6 is

2
z0.025θ̂√

10
= 1.24θ̂,

which means that the length of the approximate CI is very close to that of the exact CI.

6.2.16. Let S2 be the sample variance of a random sample of size n > 1 from N(µ, θ), 0 < θ < ∞, where µ
is known. We know E(S2) = θ.

(a) What is the efficiency of S2?

Solution.

First compute the Fisher information for θ.

log f(x; θ) = −1

2
log 2πθ − (x− µ)2

2θ
,

∂ log f(x; θ)

∂θ
= − 1

2θ
+

(x− µ)2

2θ2
,

∂2 log f(x; θ)

∂θ2
=

1

2θ2
− (x− µ)2

θ3
.

Since E[(X − µ)2] = Var(X) = θ,

I(θ) = −E

[
∂2 log f(x; θ)

∂θ2

]
= − 1

2θ2
+

1

θ2
=

1

2θ2
.

Next, consider Var(S2). We have

(n− 1)S2

θ
∼ χ2(n− 1) ⇒ Var

(
(n− 1)S2

θ

)
= 2(n− 1) ⇒ Var(S2) =

2θ2

n− 1
.

Hence, the efficiency is

1/(nI(θ))

Var(S2)
=

n− 1

n
.

(b) Under these conditions, what is the mle θ̂ of θ?

Solution.

Part (a) implies that

θ̂ =
1

n

n∑
i=1

(Xi − µ)2.
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(c) What is the asymptotic distribution of
√
n(θ̂ − θ)?

Solution. By the asymptotic distribution of MLE,
√
n(θ̂ − θ)

D→ N(0, 2θ2).

6.3. Maximum Likelihood Methods

Note that I use the reverise definition of Λ:

Λ =
L(θ̂)

L(θ0)
≥ k

because I learned this in a class. Accordingly, I use 2 log Λ, not −2 log Λ.

6.3.1. . The following data were generated from an exponential distribution with pdf f(x; θ) = (1/θ)e−x/θ,
for x > 0, where θ = 40.

(a) Histogram the data and locate θ0 = 50 on the plot.

Solution. Skipped.

(b) Use the test described in Example 6.3.1 to test H0 : θ = 50 versus H1 : θ ̸= 50. Determine the decision
at level α = 0.10.

19 15 76 23 24 66 27 12 25 7 6 16 51 26 39

Solution.

2

θ0

15∑
1

Xi =
2

50
(432) = 17.28.

Since χ2
0.05,30 = 18.49 and χ2

0.95,30 = 43.77, we reject H0 : θ = 50.

6.3.3. Show that the test with decision rule (6.3.6) is like that of Example 4.6.1 except that here σ2 is known.

Solution. (
X − θ0
σ/

√
n

)2

≥ χ2
α(1) ⇔

∣∣∣∣X − θ0
σ/

√
n

∣∣∣∣ > zα/2.

The decision rule in Example 4.6.1 is an approximate one, but if σ2 is known, this is the exact decision rule.

6.3.6. Let X1, X2, ..., Xn be a random sample from a N(µ0, σ
2 = θ) distribution, where 0 < θ < ∞ and µ0 is

known. Show that the likelihood ratio test of H0 : θ = θ0 versus H1 : θ ̸= θ0 can be based upon the statistic
W =

∑n
i=1(Xi − µ0)

2/θ0. Determine the null distribution of W and give, explicitly, the rejection rule for a
level α test.

Solution.

We have

L(θ) = (2πθ)−n/2 exp

[
−

n∑
i=1

(xi − µ0)
2/(2θ)

]
, θ̂ =

1

n

n∑
i=1

(Xi − µ0)
2.

Hence,

Λ =
L(θ̂)

L(θ0)
=

(
θ0

θ̂

)n/2

exp

[
−

n∑
i=1

(xi − µ0)
2/(2θ̂) +

n∑
i=1

(xi − µ0)
2/(2θ0)

]

=

(
nθ0∑n

i=1(xi − µ0)2

)n/2

exp

[
−n

2
+

1

2θ0

n∑
i=1

(xi − µ0)
2

]
= (nn/2e−n/2)w−n/2ew/2 ≥ k ⇒ w−n/2ew/2 ≥ k′.
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Let g(w) = log(w−n/2ew/2) = −(n/2) logw + w/2. Then

g′(w) = − n

2w
+

1

2
, g′′(w) =

n

2w2
> 0

Hence, g(w) is a convex function with a minimum at w = n, which implies that

Λ ≥ k ⇒ W ≤ c1, W ≥ c2.

Moreover, since W ∼ χ2(n) under H0, we obtain the rejection rule for level α test as

W ≤ χ2
α/2,n, W ≥ χ2

1−α/2,n,

where χ2
α/2,n and χ2

1−α/2,n are lower and upper critical regions of the chi-square distribution, respectively.

6.3.9. Let X1, X2, ..., Xn be a random sample from a Poisson distribution with mean θ > 0.

(a) Show that the likelihood ratio test of H0 : θ = θ0 versus H1 : θ ̸= θ0 is based upon the statistic
Y =

∑n
i=1 Xi. Obtain the null distribution of Y .

Solution.

Since we have θ̂ = X (omitted the proof),

Λ =
L(θ̂)

L(θ0)
=

e−
∑

xi(
∑

xi/n)
∑

xi

e−nθ0θ
∑

xi

0

= enθ0e−
∑

xi

(∑
xi

nθ0

)∑
xi

= enθ0e−y

(
y

nθ0

)y

≡ enθ0g(y).

Since g(y) is a convex function (omitted the proof), for k > 0,

Λ > k ⇒ Y ≤ c1, Y ≥ c2 (c1 < c2).

(b) For θ0 = 2 and n = 5, find the significance level of the test that rejects H0 if Y ≤ 4 or Y ≥ 17.

Solution.

Since Y ∼ Poisson(nθ0 = 10) under H0,

α = Pθ0=2(Y ≤ 4) + Pθ0=2(Y ≥ 17) = 0.0293 + 0.0270 = 0.0563.

6.3.10. Let X1, X2, ..., Xn be a random sample from a Bernoulli b(1, θ) distribution, where 0 < θ < 1.

(a) Show that the likelihood ratio test of H0 : θ = θ0 versus H1 : θ ̸= θ0 is based upon the statistic
Y =

∑n
i=1 Xi. Obtain the null distribution of Y .

Solution.

Since we have θ̂ = X (omitted the proof),

Λ =
L(θ̂)

L(θ0)
=

L(
∑

xi/n)

L(θ0)
=

(
y

nθ0

)y (
n− y

n(1− θ0)

)n−y

= K1

(
K2

y

n− y

)y

≡ K1g(y).

Since g(y) is a convex function (g′′(y) > 0),

Λ > k ⇒ Y < c1, Y > c2 (c1 < c2).

(b) For n = 100 and θ0 = 1/2, find c1 so that the test rejects H0 when Y ≤ c1 or Y ≥ c2 = 100 − c1 has
the approximate significance level of α = 0.05. Hint: Use the Central Limit Theorem.

Solution.

Since nθ0(1 − θ0) = 25, CLT can be applied, thus, Y
D∼ N(nθ0, nθ0(1 − θ0)) = N(50, 25) under H0.

Thus,

Y < c1 ⇒ Y − 50

5
<

c− 50

5
= −1.96 ⇒ c1 = 40.2 (c2 = 59.8).
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6.3.11. Let X1, X2, ..., Xn be a random sample from a Γ(α = 4, β = θ) distribution, where 0 < θ < ∞.

(a) Show that the likelihood ratio test of H0 : θ = θ0 versus H1 : θ ̸= θ0 is based upon the statistic
W =

∑n
i=1 Xi. Obtain the null distribution of 2W/θ0.

Solution.

Since θ̂ = X/4 =
∑

i Xi/(4n) (omitted the proof) and L(θ) = (Γ(4)θ4)−n
∏

i x
3
i e

−
∑

i xi/θ, the LRT
statistic is

Λ =
L(θ̂)

L(θ0)
=

(
4nθ0∑

i xi

)4n

e−4ne−
∑

i xi/θ0 = Kw−4ne−w/θ > k,

where K = (4nθ0/e)
4n and w =

∑
i xi. Let g(w) = w−4ne−w/θ. Consider log g(w), then we have

(log g(w))′′ > 0 ⇒ g′′(w) > 0, meaning that g(w) is a convex function with a minimum. Hence, the
likelihood ratio test rejects H0 if

Λ > k ⇒ W < c1, W > c2.

Also, we have W ∼ Γ(4n, θ) using the mgf of X. Then

MW (t) = (1− θt)−4n ⇒ M2W/θ0(t) = MW (2t/θ0) = (1− 2t)−4n,

which indicates that 2W/θ0 ∼ χ2(8n) under H0.

(b) For θ0 = 3 and n = 5, find c1 and c2 so that the test that rejects H0 when W ≤ c1 or W ≥ c2 has
significance level 0.05.

Solution.

By part (a),

W < c1, W > c2 ⇒ 2W

θ0
<

2c1
θ0

= χ2
0.025,8n,

2W

θ0
>

2c2
θ0

= χ2
0.975,8n.

Substituting θ0 = 3 and n = 5, we obtain

c1 =
3

2
χ2
0.025,40 = 1.5(24.43) = 36.7,

c2 =
3

2
χ2
0.975,40 = 1.5(59.34) = 89.0.

6.3.12. Let X1, X2, ..., Xn be a random sample from a distribution with pdf f(x; θ) = θ exp{−|x|θ}/2Γ(1/θ),
−∞ < x < ∞, where θ > 0. Suppose Ω = {θ : θ = 1, 2}. Consider the hypotheses H0 : θ = 2 (a normal
distribution) versus H1 : θ = 1 (a double exponential distribution). Show that the likelihood ratio test can
be based on the statistic W =

∑n
i=1(X

2
i − |Xi|).

Solution.

Since Ω = {θ : θ = 1, 2} and H0 : θ = 2, the LRT statistic is

Λ =
L(1)

L(2)
=

e−
∑

i |xi|/2n

e−
∑

i x
2
i /(

√
π)n

= Ke
∑

i(x
2
i−|xi|) = Kew,

where K > 0. Since ew is (strictly) increasing, Λ > k ⇒ W > c, which is the desired result.

6.3.17. Let X1, X2, ..., Xn be a random sample from a Poisson distribution with mean θ > 0. Consider
testing H0 : θ = θ0 against H1 : θ = θ0.

12



(a) Obtain the Wald type test of expression (6.3.13).

Solution.

Since θ̂ = X and I(θ) = 1/θ,

χ2
W =

{√
nI(X)(X − θ0)

}2

=

{√
n

X
(X − θ0)

}2

.

(b) Write an R function to compute this test statistic.

Solution. Skipped.

(c) For θ0 = 23, compute the test statistic and determine the p-value for the following data.

27 13 21 24 22 14 17 26 14 22

21 24 19 25 15 25 23 16 20 19

Solution.

Since n = 20 and X = 20.35,

χ2
W =

{√
20

20.35
(20.35− 23)

}2

= 6.90

⇒ p = P (χ2
1 > 6.90) = 1 - pchisq(6.9, 1) = 0.0086.

Note that for some reason, the textbook answer doubles it (0.0172), which does not make sense for me.

6.3.18. Let X1, X2, ..., Xn be a random sample from a Γ(α, β) distribution where α is known and β > 0.
Determine the likelihood ratio test for H0 : β = β0 against H1 : β = β0.

Solution.

We have β̂ = X/α =
∑

i Xi/(nα) (omitted the proof). Hence, the LRT statistic is

Λ =
L(β̂)

L(β0)
= · · · =

(nα
e

)nα( β0∑
i xi

)nα

e
∑

i xi/β0 = Kw−nαew,

where K > 0 and W =
∑

i Xi/β0 ∼ Γ(nα, 1). Let g(w) = w−nαew, then g′(nα) = 0 and g′′(w) > 0. Thus,
g(w) is a convex function with minimum. Hence, the likelihood ratio test rejects H0 if W < c1 or W > c2.

6.3.19. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample from a uniform distribution on
(0, θ), where θ > 0.

(a) Show that Λ for testing H0 : θ = θ0 against H1 : θ = θ0 is Λ = (Yn/θ0)
n, Yn ≤ θ0, and Λ = 0 if Yn > θ0.

Solution.

L(θ,x) =

{
θ−n θ ≥ yn

0 θ < yn.

Since L′(θ) < 0, i.e., L(θ) is strictly decreasing for θ > yn, θ̂ = Yn. Hence,

Λ =
L(θ̂)

L(θ0)
=

{
(θ0/Yn)

n θ0 ≥ Yn

0 θ0 < Yn

under H0.

(b) WhenH0 is true, show that −2 log Λ has an exact χ2(2) distribution, not χ2(1). Note that the regularity
conditions are not satisfied.
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Solution.

We have the pdf of Yn:

fYn
(y) =

n!

(n− 1)!
[FX(y)]n−1fX(y) =

nyn−1

θn0
.

Let W = 2 log Λ = 2n(log θ0 − log Yn). The inverse one-to-one transformation is

log yn = log θ0 −
w

2n
⇒ yn = θ0e

−w/2n ⇒ dy

dw
= − θ0

2n
e−w/2n.

Hence, the pdf of W is

fW (w) = fYn(θ0e
−w/2n)

∣∣∣∣ dydw
∣∣∣∣ = nθn−1

0 e−w(n−1)/2n

θn0

θ0
2n

e−w/2n =
1

2
e−w/2,

which means W ∼ Γ(1, 2) = χ2(2).

6.4. Multiparameter Case: Estimation

6.4.2. Let X1, X2, ..., Xn and Y1, Y2, ..., Ym be independent random samples from N(θ1, θ3) and N(θ2, θ4)
distributions, respectively.

(a) If Ω ⊂ R3 is defined by Ω = {(θ1, θ2, θ3) : −∞ < θi < ∞, i = 1, 2; 0 < θ3 = θ4 < ∞}, find the mles of
θ1, θ2, and θ3.

Solution.

Let θ = (θ1, θ2, θ3)
′.

L(θ) =

(
1

2πθ3

)(n+m)/2

exp

[
−
∑n

i=1(xi − θ1)
2 +

∑m
j=1(yi − θ2)

2

2θ3

]
,

ℓ(θ) = −n+m

2
log 2πθ3 −

∑n
i=1(xi − θ1)

2 +
∑m

j=1(yi − θ2)
2

2θ3
.

Hence,

∂ℓ(θ)

∂θ1
= 0 ⇒ θ̂1 = X

∂ℓ(θ)

∂θ2
= 0 ⇒ θ̂2 = Y ,

∂ℓ(θ)

∂θ3
= 0 ⇒ θ̂3 =

1

n+m

 n∑
i=1

(Xi −X)2 +

m∑
j=1

(Yi − Y )2

 .

We also need to check the second derivatives of ℓ(θ) w.r.t θ1, θ2, and θ3 are all negative.

(b) If Ω ⊂ R2 is defined by Ω = {(θ1, θ3) : −∞ < θ1 = θ2 < ∞; 0 < θ3 = θ4 < ∞}, find the mles of θ1 and
θ3.

Solution.

ℓ(θ) = −n+m

2
log 2πθ3 −

∑n
i=1(xi − θ1)

2 +
∑m

j=1(yi − θ1)
2

2θ3
.

Hence,

∂ℓ(θ)

∂θ1
= 0 ⇒ θ̂1 =

nX +mY

n+m
,

∂ℓ(θ)

∂θ3
= 0 ⇒ θ̂3 =

1

n+m

 n∑
i=1

(Xi − θ̂1)
2 +

m∑
j=1

(Yi − θ̂1)
2

 .

We also need to check the second derivatives of ℓ(θ) with respect to θ1 and θ3 are all negative.
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6.4.3. Let X1, X2, ..., Xn be iid, each with the distribution having pdf f(x; θ1, θ2) = (1/θ2)e
−(x−θ1)/θ2 ,

θ1 ≤ x < ∞, −∞ < θ2 < ∞, zero elsewhere. Find the maximum likelihood estimators of θ1 and θ2.

Solution.

This is a nonregular case because of the support of θ1.

L(θ1, θ2;x) = (1/θ2)
ne−(

∑
i xi−nθ1)/θ2 , θ1 ≤ xi < ∞, −∞ < θ2 < ∞.

for ∀i. Since ∂L/∂θ1 > 0, L is strictly increasing for θ1. Hence the minimum of X1, X2, ..., Xn maximizes

∂L(θ1, θ2;x) in terms of θ1: θ̂1 = Y1. Also,

ℓ(θ1, θ2) = −n log θ2 −
∑

i xi − nθ1
θ2

∂ℓ(θ1, θ2)

∂θ2
= − n

θ2
+

∑
i xi − nθ1

θ22
.

Hence, solving ∂ℓ(θ1,θ2)
∂θ2

= 0, we obtain

θ̂2 =

∑
i Xi − nθ̂1

n
=

∑
i Xi − nY1

n
= X − Y1.

6.4.4. The Pareto distribution is a frequently used model in the study of incomes and has the distribution
function

F (x; θ1, θ2) =

{
1− (θ1/x)

θ2 θ1 ≤ x

0 elsewhere,

where θ1 > 0 and θ2 > 0. If X1, X2, ..., Xn is a random sample from this distribution, find the maximum
likelihood estimators of θ1 and θ2. (Hint: This exercise deals with a nonregular case.)

Solution.

f(x; θ1, θ2) = −θ2

(
θ1
x

)θ2−1(
− θ1
x2

)
=

θ2θ
θ2
1

xθ2+1
, θ1 ≤ x

⇒ L(θ1, θ2;x) =
(θ2θ

θ2
1 )n∏

i x
θ2+1
i

, θ1 ≤ x1,

zero elsewhere. Since ∂L/∂θ1 > 0, or L is strictly increasing for θ1, θ̂1 = X(1) = Y1.

ℓ(θ1, θ2) =
∑

[log θ2 + θ2 log θ1 − (θ2 + 1) log xi] ,

∂ℓ(θ1, θ2)

∂θ2
=
∑

[1/θ2 + log θ1 − log xi] = n/θ2 + n log θ1 − log
∏

xi.

Hence, solving ∂ℓ(θ1,θ2)
∂θ2

= 0, we obtain

θ̂2 =
n

log
∏

i xi − n log θ̂1
=

n

log[
∏

i xi/Y n
1 ]

.

6.4.5. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size n from the uniform
distribution of the continuous type over the closed interval [θ − ρ, θ + ρ]. Find the maximum likelihood
estimators for θ and ρ. Are these two unbiased estimators?

Solution.
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L(θ, ρ) = (2ρ)−n, θ − ρ < xi < θ + ρ, zero elsewhere. Hence,

θ̂ − ρ̂ = Y1, θ̂ + ρ̂ = Yn ⇒ θ̂ =
Y1 + Yn

2
, ρ̂ =

Yn − Y1

2
.

(Omitted the check of unbiasness, but they both should be biased).

6.4.6. Let X1, X2, ..., Xn be a random sample from N(µ, σ2).

(a) If the constant b is defined by the equation P (X ≤ b) = 0.90, find the mle of b.

Solution.

0.90 = P (X ≤ b) = P

(
X − µ

σ
≤ b− µ

σ

)
⇒ b− µ

σ
= 1.28 ⇒ b = µ+ 1.28σ.

We know

µ̂ = X, σ̂ =

√
1

n

∑
i

(Xi −X)2 =

√
n− 1

n
S.

Thus, the mle of b is, by invariance of MLE,

b̂ = X + 1.28

√
n− 1

n
S.

(b) If c is given constant, find the mle of P (X ≤ c).

Solution.

P (X ≤ c) = P

(
X − µ

σ
≤ c− µ

σ

)
= Φ

(
c− µ

σ

)
⇒ ̂P (X ≤ c) = Φ

(
c− µ̂

σ̂

)
= Φ

(
c−X√

(n− 1)/nS

)
.

by invariance of MLE.

6.4.10. Show that if Xi follows the model (6.4.14), then its pdf is b−1f((x− a)/b).

Solution.

Since X = a+ be can be transformed to e = (X − a)/b,

fX(x) = f((X − a)/b)

∣∣∣∣ dedx
∣∣∣∣ = b−1f((x− a)/b).

6.5. Multiparameter Case: Testing

Note that I use the reverise definition of Λ:

Λ =
L(θ̂)

L(θ0)

because I learned this in a class. Accordingly, I use 2 log Λ, not −2 log Λ.

6.5.1. On page 80 of their test, Hollander and Wolfe (1999) present measurements of the ratio of the earth’s
mass to that of its moon that were made by 7 different spacecraft (5 of the Mariner type and 2 of the
Pioneer type). These measurements are presented below (also in the file earthmoon.rda). Based on earlier
Ranger voyages, scientists had set this ratio at 81.3035. Assuming a normal distribution, test the hypotheses
H0 : µ = 81.3035 versus H1 : µ = 81.3035, where µ is the true mean ratio of these later voyages. Using the
p-value, conclude in terms of the problem at the nominal α-level of 0.05.
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Earth to Moon Mass Ratios
81.3001 81.3015 81.3006 81.3011 81.2997 81.3005 81.3021

Solution.

From the LRT statistic:

Λ =
L(µ̂, σ̂2)

L(µ0, σ̂2
0)

=
L(X, (n− 1/n)S2)

L(µ0, (n− 1/n)S2)
> k (k > 0),

we obtain the rejection criteria under H0:∣∣∣∣√n(X − µ0)

S

∣∣∣∣ > t0.025,n−1.

Since t0.025,n−1 = t0.025,6 = 2.45 and

√
n(X − µ0)

S
=

√
7(81.3008− 81.3035)

0.000827
= −8.64,

we reject H0.

6.5.2. Obtain the boxplot of the data in Exercise 6.5.1. Mark the value 81.3035 on the plot. Compute the
95% confidence interval for µ, (4.2.3), and mark its endpoints on the plot. Comment.

Solution.

Omitted the boxplot, the mark, and the plot of the endpoints. 95% confidence interval for µ is

X ± tα/2,n−1
S√
n
= 81.3008± 2.45

0.000827√
7

= (81.30004, 81.30156).

6.5.4. Let X1, X2, ..., Xn be a random sample from the distribution N(θ1, θ2). Show that the likelihood ratio
principle for testing H0 : θ2 = θ′2 specified, and θ1 unspecified against H1 : θ2 ̸= θ′2, θ1 unspecified, leads to a
test that rejects when

∑n
1 (xi − x)2 ≤ c1 or

∑n
1 (xi − x)2 ≥ c2, where c1 < c2 are selected appropriately.

Solution.

By the previous exercises, we have

θ̂1 = X, θ̂2 = n−1
n∑

i=1

(Xi −X)2 under Ω,

θ̂10 = X under H0.

Hence, the LRT statistic is

Λ =
L(θ̂1, θ̂2)

L(θ̂10, θ′2)
= · · · =

(n
e

)n/2
w−n/2ew/2 = Kg(w),

where K > 0, w =
∑n

i=1(xi − x)2/θ′2, and g(w) = w−n/2ew/2. Since g(w) is a convex function with a
minimum at w = n (omitted the proof),

Λ > k ⇒ w ≤ k1 or w ≥ k2 ⇒
n∑

i=1

(xi − x)2 ≤ c1 or

n∑
i=1

(xi − x)2 ≥ c2,

where c1 = θ′2k1 and c2 = θ′2k2.

6.5.5. Let X1, ..., Xn and Y1, ..., Ym be independent random samples from the distributions N(θ1, θ3) and
N(θ2, θ4), respectively.
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(a) Show that the likelihood ratio for testing H0 : θ1 = θ2, θ3 = θ4 against all alternatives is given by[∑n
1 (xi − x)2/n

]n/2 [∑m
1 (yi − y)2/m

]m/2{
[
∑n

1 (xi − u)2 +
∑m

1 (yi − u)2]
/
(n+m)

}(n+m)/2

where u = (nx+my)/(n+m).

Solution.

On the whole space Ω, by the previous exercises,

θ̂1 = X, θ̂2 = Y ,

θ̂3 =
1

n

n∑
1

(Xi −X)2, θ̂4 =
1

m

n∑
1

(Yi − Y )2.

Under H0, on the other hand,

θ̂10 = θ̂20 = U,

θ̂30 = θ̂40 =
1

n+m

[
n∑
1

(Xi − U)2 +

m∑
1

(Yi − U)2

]
.

Hence, Λ = L(θ̂1, θ̂2, θ̂3, θ̂4)/L(θ̂10, θ̂30) gives the desired result.

(b) Show that the likelihood ratio test for testing H0 : θ3 = θ4, θ1 and θ2 unspecified, against H1 : θ3 ̸= θ4,
θ1 and θ2 unspecified, can be based on the random variable

F =

∑n
1 (Xi −X)2/(n− 1)∑m
1 (Yi − Y )2/(m− 1)

.

Solution.

Note that H0 is different from that in part (a). Under Ω, the mles are the same as in part (a), while
under H0,

θ̂10 = X, θ̂20 = Y ,

θ̂30 = θ̂40 =
1

n+m

[
n∑
1

(Xi −X)2 +

m∑
1

(Yi − Y )2

]
.

Hence, the LRT statistic is given by

Λ =

[∑n
1 (xi − x)2/n

]n/2 [∑m
1 (yi − y)2/m

]m/2{
[
∑n

1 (xi − x)2 +
∑m

1 (yi − y)2]
/
(n+m)

}(n+m)/2

Here, let S2
x and S2

y denote the sample variances. Then the F statistic is F = S2
x/S

2
y and thus

Λ = K
(S2

x)
n/2(S2

y)
m/2

[(n− 1)S2
x + (m− 1)S2

y ]
(n+m)/2

= K
(S2

x)
n/2(S2

y)
m/2/(S2

y)
(n+m)/2

[(n− 1)S2
x + (m− 1)S2

y ]
(n+m)/2/(S2

y)
(n+m)/2

= K
(S2

x/S
2
y)

n/2

[(n− 1)S2
x/S

2
y + (m− 1)](n+m)/2

= K
Fn/2

[(n− 1)F + (m− 1)](n+m)/2
,

which is a function of random variable F ∼ Fn−1,m−1,
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6.5.6. LetX1, X2, ..., Xn and Y1, Y2, ..., Ym be independent random samples from the two normal distributions
N(0, θ1) and N(0, θ2).

(a) Find the likelihood ratio Λ for testing the composite hypothesis H0 : θ1 = θ2 against the composite
alternative H1 : θ1 ̸= θ2.

Solution.

On the whole space Ω, by the previous exercises,

θ̂1 =
1

n

n∑
1

X2
i , θ̂2 =

1

m

n∑
1

Y 2
i .

Under H0, on the other hand, solving ℓ′(θ1) = 0 gets

θ̂1 = θ̂2 =
1

n+m

[
n∑
1

X2
i +

m∑
1

Y 2
i

]
.

Hence, the LRT statistic is

Λ =
L(θ̂1, θ̂1)

L(θ̂1)
=

{[∑n
1 x

2
i +

∑m
1 y2i

] /
(n+m)

}(n+m)/2

[
∑n

1 x
2
i /n]

n/2
[
∑m

1 y2i /m]
m/2

(b) This Λ is a function of what F-statistic that would actually be used in this test?

Solution.

Similarly to part (b) in Exercise 6.5.5, under H0 : θ1 = θ2,

F =
(
∑n

1 X
2
i /θ1)/n

(
∑m

1 Y 2
i /θ1)/m

=

∑n
1 X

2
i /n∑m

1 Y 2
i /m

∼ Fn,m

can be used in Λ as a random variable.

6.5.7. Let X and Y be two independent random variables with respective pdfs

f(x; θi) =

{(
1
θi

)
e−x/θi 0 < x < ∞, 0 < θi < ∞

0 elsewhere.

for i = 1, 2. To test H0 : θ1 = θ2 against H1 : θ1 = θ2, two independent samples of sizes n1 and n2,
respectively, were taken from these distributions. Find the likelihood ratio Λ and show that Λ can be written
as a function of a statistic having an F-distribution, under H0.

Solution.

Given that

f(x, θ1) =

(
1

θ1

)
e−x/θ1 , 0 < x < ∞,

f(y, θ2) =

(
1

θ2

)
e−y/θ2 , 0 < y < ∞.

Under Ω, we obtain the mles (omitted the proof)

θ̂1 = X, θ̂2 = Y .

While, under H0, solving ℓ′(θ1) = 0 obtains

θ̂10 = θ̂20 =
n1X + n2Y

n1 + n2
.
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Hence, the LRT statistic is

Λ =
L(θ̂1, θ̂2)

L(θ̂10)
= · · · = K

(n1x+ n2y)
n1+n2

xn1yn2
= K

(n1(x/y) + n2)
n1+n2

(x/y)n1
,

which is a function of a random variable X/Y .

Under H0, X,Y ∼ Γ(1, θ1),

2
∑n1

1 Xk

θ1
∼ χ2(2n1)

2
∑n2

1 Yk

θ1
∼ χ2(2n2).

Therefore,

X

Y
=

(2
∑n1

1 Xk/θ1)/(2n1)

(2
∑n1

1 Yk/θ1)/(2n2)
∼ F2n1,2n2

,

which is the desired result.
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