Exercises in Introduction to Mathematical Statistics (Ch. 7)

Tomoki Okuno

September 16, 2022

Note

- Not all solutions are provided: Exercises that are too simple or not very important to me are skipped.
- Texts in red are just attentions to me. Please ignore them.

7 Sufficiency

7.1 Measures of Quality of Estimators

Note that loss function problems were skipped because this kind of topic was not covered in my class.

7.1.1. Show that the mean \overline{X} of a random sample of size n from a distribution having pdf $f(x;\theta) = (1/\theta)e^{-(x/\theta)}$, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere, is an unbiased estimator of θ and has variance θ^2/n .

Solution. Since $X \sim \Gamma(1,\theta)$, $E(X) = \theta$ and $Var(X) = \theta^2$. Thus, $E(\overline{X}) = \theta$ and $Var(\overline{X}) = \theta^2/n$.

7.1.2. Let $X_1, X_2, ..., X_n$ denote a random sample from a normal distribution with mean zero and variance $\theta, 0 < \theta < \infty$. Show that $\sum_{i=1}^{n} X_i^2/n$ is an unbiased estimator of θ and has variance $2\theta^2/n$.

Solution.

Since $X/\sqrt{\theta}$ are iid $N(0,1), \sum_i X_i^2/\theta \sim \chi^2(n)$. Hence,

$$E\left(\sum X_i^2/\theta\right) = n, \Rightarrow E\left(\sum X_i/n\right) = \theta,$$

Var $\left(\sum X_i^2/\theta\right) = 2n, \Rightarrow$ Var $\left(\sum X_i/n\right) = 2\theta^2/n$

7.1.3. Let $Y_1 < Y_2 < Y_3$ be the order statistics of a random sample of size 3 from the uniform distribution having pdf $f(x;\theta) = 1/\theta$, $0 < x < \theta$, $0 < \theta < \infty$, zero elsewhere. Show that $4Y_1$, $2Y_2$, and $\frac{4}{3}Y_3$ are all unbiased estimators of θ . Find the variance of each of these unbiased estimators.

Solution.

Note that the order statistics from a uniform distribution have a beta distribution.

By the theorem of a pdf of the order statistic, we obtain

$$f_{Y_1}(y) = \frac{3!}{0!2!} [1 - F_X(y)]^2 f_X(y) = \frac{3}{\theta} \left(1 - \frac{y}{\theta}\right)^2,$$

$$f_{Y_2}(y) = \frac{3!}{1!1!} F_X(y) [1 - F_X(y)] f_X(y) = \frac{6}{\theta} \left(\frac{y}{\theta}\right) \left(1 - \frac{y}{\theta}\right),$$

$$f_{Y_3}(y) = \frac{3!}{2!0!} F_X(y)^2 f_X(y) = \frac{3}{\theta} \left(\frac{y}{\theta}\right)^2.$$

Hence, let $y/\theta = w$, $dy = \theta dw$, then

$$\begin{split} E(Y_1) &= \int_0^{\theta} 3\frac{y}{\theta} \left(1 - \frac{y}{\theta}\right)^2 dy = 3\theta \int_0^1 w \left(1 - w\right)^2 dw = 3\theta \frac{\Gamma(2)\Gamma(3)}{\Gamma(5)} = \frac{\theta}{4}, \\ E(Y_2) &= \int_0^{\theta} 6\left(\frac{y}{\theta}\right)^2 \left(1 - \frac{y}{\theta}\right) dy = 6\theta \int_0^1 w^2 \left(1 - w\right) dw = 6\theta \frac{\Gamma(3)\Gamma(2)}{\Gamma(5)} = \frac{\theta}{2}, \\ E(Y_3) &= \int_0^{\theta} 3\left(\frac{y}{\theta}\right)^3 dy = 3\theta \int_0^1 w^3 dw = 3\theta \frac{\Gamma(4)\Gamma(1)}{\Gamma(5)} = \frac{3\theta}{4}, \end{split}$$

which is the desired result.

7.1.4. Let Y_1 and Y_2 be two independent unbiased estimators of θ . Assume that the variance of Y_1 is twice the variance of Y_2 . Find the constants k_1 and k_2 so that $k_1Y_1 + k_2Y_2$ is an unbiased estimator with the smallest possible variance for such a linear combination.

Solution.

Given that $k_1Y_1 + k_2Y_2$ is unbiased,

$$E(k_1Y_1 + k_2Y_2) = (k_1 + k_2)\theta \implies k_1 + k_2 = 1$$

Hence,

$$Var(k_1Y_1 + k_2Y_2) = (k_1^2 + k_2^2/2)VarY_1$$

= $[2k_1 + (1 - k_1)^2]VarY_1/2$
= $(3k_1^2 - 2k_1 + 1)VarY_1/2$
= $[3(k_1 - 1/3)^2 + 2/3]VarY_1/2$
> $(1/3)VarY_1$,

suggesting that $k_1 = 1/3$, $k_2 = 2/3$ that minimize the variance for $k_1Y_1 + k_2Y_2$.

7.2 A Sufficient Statistic for a Parameter

Here, I used the definition of the exponential family as appropriate: Suppose

$$f(x;\theta) = h(x)k(\theta)e^{T(x)c(\theta)},$$

where $c(\theta)$ is nonconstant, T'(x) is continuous. Then $T = \sum T(X_i)$ is (complete) and sufficient for θ .

7.2.1. Let $X_1, X_2, ..., X_n$ be iid $N(0, \theta), 0 < \theta < \infty$. Show that $\sum_{i=1}^{n} X_i^2$ is a sufficient statistic for θ .

Solution.

The pdf of X is $f(x;\theta) = (2\pi\theta)^{-1/2}e^{-x^2/(2\theta)}$, which is clearly a member of the exponential family where $T(x) = x^2$. Hence, $T = \sum_{i=1}^{n} T(X_i) = \sum_{i=1}^{n} X_i^2$ is sufficient for θ .

7.2.2. Prove that the sum of the observations of a random sample of size n from a Poisson distribution having parameter θ , $0 < \theta < \infty$, is a sufficient statistic for θ .

Solution.

The pdf of X is $f(x;\theta) = (x!)^{-1}e^{-\theta}e^{x\log\theta}$, which is a member of the exponential family where T(x) = x. Hence, $T = \sum_{i=1}^{n} T(X_i) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

7.2.3. Show that the nth order statistic of a random sample of size n from the uniform distribution having pdf $f(x;\theta) = 1/\theta$, $0 < x < \theta$, $0 < \theta < \infty$, zero elsewhere, is a sufficient statistic for θ . Generalize this result by considering the pdf $f(x;\theta) = Q(\theta)M(x)$, $0 < x < \theta$, $0 < \theta < \infty$, zero elsewhere. Here, of course,

$$\int_0^\theta M(x)dx = \frac{1}{Q(\theta)}.$$

Solution.

Show only the general case. The joint pdf, or likelihood function, is given by

$$L(\theta; \mathbf{x}) = [Q(\theta)]^n \prod_{1}^{n} M(x_i) I(0 < x_i < \theta)$$
$$= [Q(\theta)]^n I(0 < y_n < \theta) \prod_{1}^{n} M(x_i)$$
$$\equiv k(\mathbf{x}; \theta) h(\mathbf{x}),$$

zero elsewhere. By the factorization theorem, Y_n is a sufficient statistic for θ .

7.2.4. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a geometric distribution that has pmf $f(x; \theta) = (1 - \theta)^x \theta$, $x = 0, 1, 2, ..., 0 < \theta < 1$, zero elsewhere. Show that $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

Solution.

The pdf of X (Geometric distribution) is expressed as $f(x;\theta) = \theta e^{x \log(1-\theta)}$, which is a member of the exponential family where T(x) = x. Hence, $T = \sum_{i=1}^{n} T(X_i) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

7.2.5. Show that the sum of the observations of a random sample of size n from a gamma distribution that has pdf $f(x; \theta) = (1/\theta)e^{-x/\theta}$, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere, is a sufficient statistic for θ .

Solution.

The pdf of X clearly shows that $\Gamma(1,\theta)$ or Exponential distribution is a member of the exponential family where T(x) = x. Hence, $T = \sum_{i=1}^{n} T(X_i) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ , which is the desired result.

7.2.6. Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a beta distribution with parameters $\alpha = \theta$ and $\beta = 5$. Show that the product $X_1 X_2 \cdots X_n$ is a sufficient statistic for θ .

Solution.

The pdf of X is expressed as $f(x;\theta) = B(\theta,5)^{-1}(1-x)^4 e^{(\theta-1)\log x}$, which is a member of the exponential family where $T(x) = \log x$. Hence, $T = \sum_{i=1}^{n} \log X_i = \log \prod_{i=1}^{n} X_i$, i.e., $\prod_{i=1}^{n} X_i$ is a sufficient statistic for θ .

7.2.7. Show that the product of the sample observations is a sufficient statistic for $\theta > 0$ if the random sample is taken from a gamma distribution with parameters $\alpha = \theta$ and $\beta = 6$.

Solution.

The pdf of $\Gamma(\theta, 6)$ is expressed as $f(x; \theta) = (\Gamma(\theta)6^{\theta})^{-1}e^{-x/6}e^{(\theta-1)\log x}$, which is a member of the exponential family where $T(x) = \log x$. Hence, $T = \sum_{i=1}^{n} \log X_i = \log \prod_{i=1}^{n} X_i$, i.e., $\prod_{i=1}^{n} X_i$ is a sufficient statistic for θ .

7.2.8. What is the sufficient statistic for θ if the sample arises from a beta distribution in which $\alpha = \beta = \theta > 0$?

Solution.

The pdf of $\text{Beta}(\theta, \theta)$ is given by $f(x, \theta) = B(\theta, \theta)^{-1} \exp\left[(\theta - 1)\log x(1 - x)\right]$, which is a member of the exponential family because $h(x) = 1, k(\theta) = B(\theta, \theta)^{-1}, T(x) = \log x(1 - x)$ and $c(\theta) = \theta - 1$. Hence, $\sum_{i=1}^{n} \log X_i(1 - X_i)$ or $\prod_{i=1}^{n} X_i(1 - X_i)$ is sufficient for θ .

7.3. Properties of a Sufficient Statistic

7.3.1. In each of Exercises 7.2.1–7.2.4, show that the mle of θ is a function of the sufficient statistic for θ .

Solution.

The mles of Exercises 7.2.1–7.2.4 are, respectively, $n^{-1} \sum X_i^2$, \overline{X} , Y_n , and $(1 + \overline{X})^{-1}$, which are a function of each sufficient statistic for θ .

7.3.2. Let $Y_1 < Y_2 < Y_3 < Y_4 < Y_5$ be the order statistics of a random sample of size 5 from the uniform distribution having pdf $f(x; \theta) = 1/\theta$, $0 < x < \theta$, $0 < \theta < \infty$, zero elsewhere. Show that $2Y_3$ is an unbiased estimator of θ . Determine the joint pdf of Y_3 and the sufficient statistic Y_5 for θ . Find the conditional expectation $E(2Y_3|y_5) = \phi(y_5)$. Compare the variances of $2Y_3$ and $\phi(Y_5)$.

Solution.

$$f_{Y_3}(y_3) = \frac{5!}{2!2!} F_X(y_3)^2 [1 - F_X(y_3)]^2 f_X(y_3) = \frac{30}{\theta} \left(\frac{y_3}{\theta}\right)^2 \left(1 - \frac{y_3}{\theta}\right)^2.$$

Let $y/\theta = w$, then

$$E(Y_3) = \int_0^1 30\theta w^3 (1-w)^2 dw = 30\theta \frac{\Gamma(4)\Gamma(3)}{\Gamma(7)} = \frac{\theta}{2},$$

indicating $2Y_3$ is unbiased for θ .

The pdf of Y_5 and the joint pdf of Y_3 and Y_5 are, respectively,

$$f_{Y_5}(y_5) = 5\frac{y_5^4}{\theta_5} \quad 0 < y_5 < \theta$$

$$f_{Y_3,Y_5}(y_3, y_5) = \dots = \frac{60}{\theta^2} \left(\frac{y_3}{\theta}\right)^2 \left(\frac{y_5 - y_3}{\theta}\right) = \frac{60}{\theta^5} y_3^2(y_5 - y_3), \quad 0 < y_3 < y_5 < \theta$$

Hence,

$$E(2Y_3|y_5) = \int_0^{y_5} 2y_3 \frac{60y_3^2(y_5 - y_3)/\theta^5}{5y_5^4/\theta_5} = \frac{24}{y_5} \int_0^{y_5} (y_3^3y_5 - y_3^4)dy_3 = \frac{6y_5}{5}$$

Since $E(Y_3^2) = 2\theta^2/7$, $Var(Y_3) = 2\theta^2/7 - (\theta/2)^2 = \theta^2/28$. Hence, $Var(2Y_3) = 4Var(Y_3) = \theta^2/7$. Also,

$$E(Y_5) = \dots = \frac{5}{6}\theta, \ E(Y_5^2) = \dots = \frac{5}{7}\theta^2 \Rightarrow \operatorname{Var}(Y_5) = \frac{5}{7}\theta^2 - \frac{25}{36}\theta^2 = \frac{5}{(36)(7)}\theta^2.$$

Therefore,

$$\operatorname{Var}(\phi(Y_5)) = \operatorname{Var}(6Y_3/5) = \frac{36}{25} \operatorname{Var}(Y_5) = \frac{1}{35} \theta^2 < \operatorname{Var}(2Y_3),$$

which is the desired result.

7.3.3. If X_1, X_2 is a random sample of size 2 from a distribution having pdf $f(x; \theta) = (1/\theta)e^{-x/\theta}, 0 < x < \infty, 0 < \theta < \infty$, zero elsewhere, find the joint pdf of the sufficient statistic $Y_1 = X_1 + X_2$ for θ and $Y_2 = X_2$. Show that Y_2 is an unbiased estimator of θ with variance θ^2 . Find $E(Y_2|y_1) = \phi(y_1)$ and the variance of $\phi(Y_1)$.

Solution.

First, the joint pdf of X_1 and X_2 is

$$f_{X_1,X_2}(x_1,x_2) = \theta^{-2} e^{-(x_1+x_2)/\theta}, \ 0 < x_1 < \infty, \ 0 < x_2 < \infty$$

The inverse functions are $x_1 = y_1 - y_2$ and $x_2 = y_2$, which gives us J = 1. So, the joint pdf of Y_1 and Y_2 is

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(y_1-y_2,y_2)|J| = \theta^{-2}e^{-y_1/\theta}, \ 0 < y_2 < y_1 < \infty$$

Since $Y_2 = X_2 \sim \Gamma(1, \theta)$, $E(Y_2) = \theta$ and $Var(Y_2) = \theta^2$.

Next, the pdf of Y_1 is

$$f_{Y_1}(y_1) = \int_0^{y_1} \theta^{-2} e^{-y_1/\theta} dy_2 = \theta^{-2} y_1 e^{-y_1/\theta},$$

which gives the conditonal pdf:

$$f_{Y_2|Y_1}(y_2|y_1) = \frac{f_{Y_1,Y_2}(y_1,y_2)}{f_{Y_1}(y_1)} = y_1^{-1}, \ 0 < y_2 < y_1 < \infty.$$

Hence,

$$E(Y_2|y_1) = \int_0^{y_1} y_2 f_{Y_2|Y_1}(y_2|y_1) dy_2 = y_1^{-1} \int_0^{y_1} y_2 dy_2 = \frac{y_1}{2}.$$

Since $Y_1 \sim \Gamma(2, \theta)$, $\operatorname{Var}(Y_1) = 2\theta^2$. So, $\operatorname{Var}(\phi(Y_1)) = \operatorname{Var}(Y_1)/4 = \theta^2/2$.

7.3.4. Let $f(x,y) = (2/\theta^2)e^{-(x+y)/\theta}$, $0 < x < y < \infty$, zero elsewhere, be the joint pdf of the random variables X and Y.

(a) Show that the mean and the variance of Y are, respectively, $3\theta/2$ and $5\theta^2/4$.

Solution.

$$f_Y(y) = \int_0^y (2/\theta^2) e^{-(x+y)/\theta} dx = (2/\theta) (e^{-y/\theta} - e^{-2y/\theta})$$

Since the first and the second term follow $2\Gamma(1,\theta)$ and $\Gamma(1,\theta/2)$, respectively, $E(Y) = 2\theta - \theta/2 = 3\theta/2$. Also, $E(Y^2) = \cdots = 7\theta^2/2$ indicating that $\operatorname{Var}(Y) = 7\theta^2/2 - (3\theta/2)^2 = 5\theta^2/4$.

(b) Show that $E(Y|x) = x + \theta$. In accordance with the theory, the expected value of $X + \theta$ is that of Y, namely, $3\theta/2$, and the variance of $X + \theta$ is less than that of Y. Show that the variance of $X + \theta$ is in fact $\theta^2/4$.

Solution.

Since $f_X(x) = \int_x^\infty (2/\theta^2) e^{-(x+y)/\theta} dy = (2/\theta) e^{-2x/\theta}$,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = (1/\theta)e^{(x-y)/\theta},$$
$$E(Y|X=x) = \int_x^\infty y(1/\theta)e^{(x-y)/\theta}dy = \dots = x + \theta$$

implies that $E(Y|X) = X + \theta$. And $E_X(E(Y|X)) = E(Y) = 3\theta/2$ by iterative expectation.

Since
$$X \sim \Gamma(1, \theta/2)$$
, $\operatorname{Var}(X + \theta) = \operatorname{Var}(X) = \theta^2/4$.

7.3.5. In each of Exercises 7.2.1–7.2.3, compute the expected value of the given sufficient statistic and, in each case, determine an unbiased estimator of θ that is a function of that sufficient statistic alone.

Solution.

For 7.2.1, $E(\sum_{1}^{n} X_{i}^{2}) = nE(X^{2}) = n\theta$ indicate that $\sum_{1}^{n} X_{i}^{2}/n$ is an unbiased estimator of θ . For 7.2.2, $E(\sum_{1}^{n} X_{i}) = nE(X) = n\theta$ indicate that $\sum_{1}^{n} X_{i}/n$ is an unbiased estimator of θ . For 7.2.3, $f_{Y_{n}}(y) = ny^{n-1}/\theta^{n}$ and $E(Y_{n}) = \frac{n}{n+1}\theta$ indicate that $\frac{n+1}{n}Y_{n}$ is an unbiased estimator of θ . **7.3.6.** Let $X_{1}, X_{2}, ..., X_{n}$ be a random sample from a Poisson distribution with mean θ . Find the conditional expectation $E(X_{1} + 2X_{2} + 3X_{3}|\sum_{1}^{n} X_{i})$.

Solution.

First, the expectation can be expanded by:

$$E(X_1 + 2X_2 + 3X_3 | \sum_{1}^{n} X_i) = E(X_1 | \sum_{1}^{n} X_i) + 2E(X_2 | \sum_{1}^{n} X_i) + 3E(X_3 | \sum_{1}^{n} X_i)$$
$$= 6E(X_1 | \sum_{1}^{n} X_i) \text{ since } X_i \text{ are iid}$$

The conditional probability

$$P(X_1 = x_1 | \sum_{1}^{n} X_i = x) = \frac{P(X_1 = x)P(\sum_{1}^{n} X_i = x - x_1)}{P(\sum_{1}^{n} X_i = x)} = \dots = \binom{x}{x_1} \left(\frac{1}{n}\right)^{x_1} \left(1 - \frac{1}{n}\right)^{x - x_1},$$

indicates that

$$X_1 = x_1 \Big| \sum_{1}^{n} X_i = x \sim \text{Binomial}\left(x, \frac{1}{n}\right) \Big|$$

Hence, the expectation is

$$E(X_1|\sum_{1}^{n} X_i = x) = \frac{x}{n} \implies E(X_1|\sum_{1}^{n} X_i) = \frac{\sum_{1}^{n} X_i}{n} = \overline{X},$$

which gives us

$$E(X_1 + 2X_2 + 3X_3 \Big| \sum_{1}^{n} X_i) = 6\overline{X}.$$

7.4. Completeness and Uniqueness

7.4.1. If $az^2 + bz + c = 0$ for more than two values of z, then a = b = c = 0. Use this result to show that the family $\{b(2, \theta) : 0 < \theta < 1\}$ is complete.

Solution.

Suppose E[g(X)] = 0, then

$$\sum_{x=0}^{2} g(x) {\binom{2}{x}} \theta^{x} (1-\theta)^{2-x} = g(0)(1-2\theta+\theta^{2}) + 2g(1)(\theta-\theta^{2}) + g(2)\theta^{2}$$
$$= [g(0) - 2g(1) + g(2)]\theta^{2} + [-2g(0) + 2g(1)]\theta + g(0)$$
$$= 0$$

requires g(0) - 2g(1) + g(2) = -2g(0) + 2g(1) = g(0), i.e., g(0) = g(1) = g(2) = 0, which is the desired result. **7.4.2.** Show that each of the following families is not complete by finding at least one nonzero function u(x) such that E[u(X)] = 0, for all $\theta > 0$.

(a)

$$f(x;\theta) = \begin{cases} \frac{1}{2\theta} & -\theta < x < \theta\\ 0 & \text{elsewhere.} \end{cases}$$

Solution. Since $X \sim U(-\theta, \theta)$, E(X) = 0. Thus, u(x) = x is one nonzero function we want. (b) $N(0, \theta)$, where $0 < \theta < \infty$.

Solution. We know E(X) = 0. Thus, u(x) = x is one nonzero function that is desired. **7.4.3.** Let $X_1, X_2, ..., X_n$ represent a random sample from the discrete distribution having the pmf

$$f(x;\theta) = \begin{cases} \theta^x (1-\theta)^{1-x} & x = 0, 1, \ 0 < \theta < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Show that $Y_1 = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ . Find the unique function of Y_1 that is the MVUE of θ .

Solution.

We know that X has a Bernoulli distribution that is a member of the exponential family. Then we can say $Y_1 \sim \text{Binom}(n, \theta)$ is a complete sufficient statistic for θ . Since $E(Y_1) = n\theta$, Y_1/n is the MVUE of θ .

7.4.4 Consider the family of probability density functions $\{h(z; \theta) : \theta \in \Omega\}$, where $h(z; \theta) = 1/\theta$, $0 < z < \theta$, zero elsewhere.

(a) Show that the family is complete provided that $\Omega = \{\theta : 0 < \theta < \infty\}$. *Hint*: For convenience, assume that u(z) is continuous and note that the derivative of E[u(Z)] with respect to θ is equal to zero also.

Solution.

This is a simple case. Suppose E[u(Z)] = 0, then

$$\int_0^\theta u(z)/\theta dz = 0 \implies \frac{d}{d\theta} \int_0^\theta u(z)/\theta dz = 0 \implies u(\theta) = 0 \ (\theta > 0).$$

Since z > 0, it says g(z) = 0, which is the desired result.

(b) Show that this family is not complete if $\Omega = \{\theta : 1 < \theta < \infty\}$. *Hint*: Concentrate on the interval 0 < z < 1 and find a nonzero function u(z) on that interval such that E[u(Z)] = 0 for all $\theta > 1$.

Solution.

This is a complicated case since $E[u(Z)] = 0 \Rightarrow u(\theta) = 0$, $\theta > 1$, which does not contain 0 < z < 1. In this cases,

$$E[u(Z)] = 0 \Rightarrow \int_0^\theta u(z)/\theta dz = \int_0^1 u(z)/\theta dz + \int_1^\theta u(z)/\theta dz = 0.$$

Consider to make the first term on the left side zero. let

$$u(z) = \begin{cases} z - \frac{1}{2} & 0 < z < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Then, we find that

$$\int_0^1 (z - 1/2)/\theta dz + \int_1^\theta 0/\theta dz = \left[\frac{1}{2\theta} \left(z - \frac{1}{2}\right)^2\right]_0^1 = 0.$$

7.4.5. Show that the first order statistic Y_1 of a random sample of size n from the distribution having pdf $f(x;\theta) = e^{-(x-\theta)}, \theta < x < \infty, -\infty < \theta < \infty$, zero elsewhere, is a complete sufficient statistic for θ . Find the unique function of this statistic which is the MVUE of θ .

Solution.

$$L(\theta; \mathbf{x}) = \prod_{1}^{n} e^{-(x_i - \theta)} I(\theta < x_i) = e^{-(\sum x_i - n\theta)} I(\theta < y_1),$$

indicating that Y_1 is sufficient for θ . Then, the pdf of Y_1 is

$$f_{Y_1}(y_1) = \dots = ne^{-n(y_1 - \theta)}, \ y_1 > \theta$$

Further, suppose $E[g(Y_1)] = 0$, then

$$\int_{\theta}^{\infty} g(y_1) n e^{-n(y_1 - \theta)} dy_1 = 0 \implies n g(\theta) = 0 \implies g(\theta) = 0, \ -\infty < \theta < \infty.$$

Thus, $g(y_1) = 0$, for all $y_1 > \theta$ indicating that Y_1 is a complete statistic for θ . Finally,

$$E(Y_1) = \int_{\theta}^{\infty} ny_1 e^{-n(y_1 - \theta)} dy_1 = \dots = \theta + \frac{1}{n},$$

implies that $Y_1 - 1/n$ is the MVUE of θ by the Lehmann-Scheffe.

7.4.7. Let X have the pdf $f_X(x;\theta) = 1/(2\theta)$, for $-\theta < x < \theta$, zero elsewhere, where $\theta > 0$.

(a) Is the statistic Y = |X| a sufficient statistic for θ ? Why?

Solution.

Yes; because the joint pdf of X (or likelihood) is

$$L(\theta; \mathbf{x}) = \prod_{1}^{n} (2\theta)^{-1} I(-\theta < x_i < \theta) = (2\theta)^{-n} \prod_{i=1}^{n} I(|x_i| < \theta),$$

implies that Y = |X| a sufficient statistic by the factorization theorem.

(b) Let $f_Y(y;\theta)$ be the pdf of Y. Is the family $\{f_Y(y;\theta): \theta > 0\}$ complete? Why? Solution.

$$F_Y(y) = P(Y \le y) = P(|X| \le y) = P(-y \le X \le y) = \begin{cases} 0 & y \le 0\\ y/\theta & 0 < y < \theta\\ 1 & y \ge \theta, \end{cases}$$

gives us $f_Y(y) = 1/\theta$, $0 < \theta < 1$, zero elsewhere. i.e., $Y \sim U(0, \theta)$. Suppose E[g(Y)] = 0, then

$$\int_0^\theta g(y)/\theta dy = 0 \ \Rightarrow \ g(\theta)/\theta = 0, \ \theta > 0 \ \Rightarrow \ g(y) = 0, \ y > 0$$

Hence, the answer is yes; Y is a complete statistic for θ .

7.4.9. Let $X_1, ..., X_n$ be iid with pdf $f(x; \theta) = 1/(3\theta), -\theta < x < 2\theta$, zero elsewhere, where $\theta > 0$.

(a) Find the mle $\hat{\theta}$ of θ .

Solution.

The joint pdf of X (or likelihood) is

$$L(\theta; \mathbf{x}) = \prod_{1}^{n} (3\theta)^{-1} I(-\theta < x_i < 2\theta)$$

= $(3\theta)^{-n} I(-\theta < y_1 < y_n < 2\theta)$
= $(3\theta)^{-n} I(\theta > -y_1 \text{ and } \theta > y_n/2),$

indicating that $\hat{\theta} = \max(-Y_1, 0.5Y_n).$

(b) Is $\hat{\theta}$ a sufficient statistic for θ ? Why?

Solution. Yes; by part (a) and the factorization theorem.

(c) Is $(n+1)\widehat{\theta}/n$ the unique MVUE of θ ? Why?

Solution.

Skipped; the calculation should be so heavy. I will separate it into two cases: $\hat{\theta} = -Y_1$ and $\hat{\theta} = 0.5Y_n$ to show $E(\hat{\theta}) = (n/(n+1)\theta)$.

7.4.10. Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample of size *n* from a distribution with pdf $f(x;\theta) = 1/\theta$, $0 < x < \theta$, zero elsewhere. By Example 7.4.2, the statistic Y_n is a complete sufficient statistic for θ and it has pdf

$$g(y_n; \theta) = \frac{ny^{n-1}}{\theta^n}, \ 0 < y_n < \theta,$$

and zero elsewhere.

(a) Find the distribution function $H_n(z;\theta)$ of $Z = n(\theta - Y_n)$.

Solution.

Since the cdf of Y_n is $G(y_n) = y^n / \theta^n$, $0 < y_n < \theta$,

$$H_n(z;\theta) = P(Z \le z) = P(Y_n \ge \theta - z/n) = 1 - P(Y_n < \theta - z/n)$$
$$= 1 - G(\theta - z/n)$$
$$= 1 - \frac{(\theta - z/n)^n}{\theta^n}$$
$$= 1 - \left(1 - \frac{z/\theta}{n}\right)^n.$$

(b) Find the $\lim_{n\to\infty} H_n(z;\theta)$ and thus the limiting distribution of Z.

Solution. By part (a), $H_n(z;\theta) \to 1 - e^{-z/\theta}$ as $n \to \infty$. That is $Z \sim \Gamma(1,\theta)$.

7.5. The Exponential Class of Distributions

7.5.1. Write the pdf

$$f(x;\theta) = \frac{1}{6\theta^4} x^3 e^{-x/\theta}, \ 0 < x < \infty, \ 0 < \theta < \infty,$$

zero elsewhere, in the exponential form. If $X_1, X_2, ..., X_n$ is a random sample from this distribution, find a complete sufficient statistic Y_1 for θ and the unique function $\psi(Y_1)$ of this statistic that is the MVUE of θ . Is $\psi(Y_1)$ itself a complete sufficient statistic?

Solution.

 $X \sim \Gamma(4,\theta)$ is clearly a member of the exponential family, so $Y_1 = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ . We know $Y_1 \sim \Gamma(4n,\theta)$ indicating $E(Y_1) = 4n\theta$. Thus, $Y_1/(4n) = \overline{X}/4$ is the MVUE of θ . Clearly, $\psi(Y_1)$, a function of Y_1 alone, is a complete sufficient statistic.

7.5.2. Let $X_1, X_2, ..., X_n$ denote a random sample of size n > 1 from a distribution with pdf $f(x; \theta) = \theta e^{-\theta x}$, $0 < x < \infty$, zero elsewhere, and $\theta > 0$. Then $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ . Prove that (n-1)/Y is the MVUE of θ .

Solution.

Since $X \sim \Gamma(1, 1/\theta), Y \sim \Gamma(n, 1/\theta)$: $f_Y(y) = [\theta^n / \Gamma(n)] y^{n-1} e^{-\theta y}, 0 < y < \infty$. Hence

$$E\left(\frac{1}{Y}\right) = \int_0^\infty \frac{\theta^n}{\Gamma(n)} y^{n-2} e^{-\theta y} dy = \frac{\theta^n}{\Gamma(n)} \frac{\Gamma(n-1)}{\theta^{n-1}} = \frac{\theta}{n-1},$$

indicating that (n-1)/Y is the MVUE of θ .

7.5.3. Let $X_1, X_2, ..., X_n$ denote a random sample of size n from a distribution with pdf $f(x; \theta) = \theta x^{\theta-1}, 0 < x < 1$, zero elsewhere, and $\theta > 0$.

(a) Show that the geometric mean $(X_1 X_2 \cdots X_n)^{1/n}$ of the sample is a complete sufficient statistic for θ .

Solution.

 $f(x;\theta) = \theta e^{(\theta-1)\log x}, 0 < x < 1$ implies that this distribution is a member of the exponential family. Since $\sum_{i=1}^{n} \log X_i = \log \prod_{i=1}^{n} X_i, \prod_{i=1}^{n} X_i$ is a complete sufficient statistic for θ . The statistic is one-to-one, so $(\prod_{i=1}^{n} X_i)^{1/n}$, the geometric mean, is also complete and sufficient for θ .

(b) Find the maximum likelihood estimator of θ , and observe that it is a function of this geometric mean.

Solution.

Solving $\ell'(\theta) = 0$ and $\ell''(\theta) < 0$, we obtain the mle, $\hat{\theta} = -n/\log \prod_{i=1}^{n} X_i = -1/\log(\prod_{i=1}^{n} X_i)^{1/n}$, which is a function of this geometric mean.

7.5.6. Given that $f(x;\theta) = \exp[\theta K(x) + H(x) + q(\theta)]$, a < x < b, $\gamma < \theta < \delta$, represents a regular case of the exponential class, show that the moment-generating function M(t) of Y = K(X) is $M(t) = \exp[q(\theta) - q(\theta+t)]$, $\gamma < \theta + t < \delta$.

Solution.

$$M_Y(t) = \int_a^b \exp[(\theta + t)K(x) + H(x) + q(\theta)]dx$$

= $\exp[q(\theta) - q(\theta + t)] \int_a^b \exp[(\theta + t)K(x) + H(x) + q(\theta + t)]dx$
= $\exp[q(\theta) - q(\theta + t)] \int_a^b f(x; \theta + t)dx$
= $\exp[q(\theta) - q(\theta + t)], \quad \gamma < \theta + t < \delta.$

7.5.7. In the preceding exercise, given that $E(Y) = E[K(X)] = \theta$, prove that Y is $N(\theta, 1)$. *Hint*: Consider $M'(0) = \theta$ and solve the resulting differential equation.

Solution.

Let
$$\psi(t) = \log M(t) = q(\theta) - q(\theta + t)$$
. Then $\psi'(t) = -q'(\theta + t)$, so $E(Y) = \psi'(0) = -q'(\theta)$, indicating
 $-q'(\theta) = \theta \Rightarrow q(\theta) = -\theta^2/2 + C$ (constant).

Hence,

$$M_Y(t) = \exp[q(\theta) - q(\theta + t)] = \exp[-\theta^2/2 + C - (-(\theta + t)^2/2 + C)] = \exp[-\theta^2/2 + (\theta + t)^2/2] = \exp[\theta t + t^2/2]$$

implies that $Y \sim N(\theta, 1)$.

7.5.10. Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with pdf $f(x; \theta) = \theta^2 x e^{-\theta x}, 0 < x < \infty$, where $\theta > 0$.

(a) Argue that $Y = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .

Solution.

 $X \sim \Gamma(2, 1/\theta)$ is a member of the exponential family with T(X) = X. Thus, $Y = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .

(b) Compute E(1/Y) and find the function of Y that is the unique MVUE of θ .

Solution.

Since we have $Y \sim \Gamma(2n, 1/\theta)$,

$$E(Y^{-1}) = \int_0^\infty \frac{\theta^{2n}}{\Gamma(2n)} y^{2n-2} e^{-\theta y} dy = \frac{\theta^{2n}}{\Gamma(2n)} \frac{\Gamma(2n-1)}{\theta^{2n-1}} = \frac{\theta}{2n-1}$$

indicating that (2n-1)/Y is is the MVUE of θ .

7.5.11. Let $X_1, X_2, ..., X_n, n > 2$, be a random sample from the binomial distribution $b(1, \theta)$.

(a) Show that $Y_1 = X_1 + X_2 + \dots + X_n$ is a complete sufficient statistic for θ .

Solution.

Since the Binomial distribution is a member of the exponential family and

$$f(x;\theta) = \theta^x (1-\theta)^{1-x} = e^{x \operatorname{logit}(\theta) + \log(1-\theta)}, \ x = 0, 1,$$

 $Y_1 = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .

(b) Find the function $\psi(Y_1)$ that is the MVUE of θ .

Solution. Since $Y_1 \sim b(n, \theta)$, $E(Y_1) = n\theta$. Thus, $\psi(Y_1) = Y_1/n$ is the MVUE of θ by part (a).

(c) Let $Y_2 = (X_1 + X_2)/2$ and compute $E(Y_2)$.

Solution. $2Y_2 = X_1 + X_2 \sim b(2, \theta)$ gives $E(2Y_2) = 2\theta \Rightarrow E(Y_2) = \theta$.

(d) Determine $E(Y_2|Y_1 = y_1)$.

Solution.

By the iterative expectation and part (c), $E_{Y_1}[E(Y_2|Y_1)] = E(Y_2) = \theta$. Thus, $E(Y_2|Y_1 = y_1)$ is MVUE of θ by the Rao-Blackwell and Lehmann-Scheffe theorems. By part (b), we found that $Y_1/n = \overline{X}$ is MVUE of θ , which shows $E(Y_2|Y_1 = y_1) = Y_1/n$.

7.5.12. Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with pmf $p(x; \theta) = \theta^x (1 - \theta), x = 0, 1, 2, ...,$ zero elsewhere, where $0 \le \theta \le 1$.

(a) Find the mle, $\hat{\theta}$, of θ .

Solution.

Solving $\ell'(\theta) = 0$ and checking $\ell''(\theta) < 0$, we obtain

$$\widehat{\theta} = \frac{\overline{X}}{1 + \overline{X}}.$$

(b) Show that $\sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .

Solution. X is a member of the exponential family and T(X) = X, which implies the desired result.

(c) Determine the MVUE of θ .

Since X has a negative binomial with parameter 1 and $1 - \theta$, a member of the exponential family,

$$E(\overline{X}) = E(X) = \frac{\theta}{1-\theta}$$

and thus

$$\overline{X} \text{ is MVUE of } \frac{\theta}{1-\theta}$$
$$\Rightarrow g(\overline{X}) \text{ is MVUE of } g\left(\frac{\theta}{1-\theta}\right)$$

Let $g(x) = \frac{x}{1+x}$, then

$$g(\overline{X}) = \frac{\overline{X}}{1 + \overline{X}} = \widehat{\theta}, \quad g\left(\frac{\theta}{1 - \theta}\right) = \theta.$$

Hence, the mle of θ is the MVUE of θ .

7.6. Functions of a Parameter

7.6.1. Let $X_1, X_2, ..., X_n$ denote a random sample from a distribution that is $N(\theta, 1), -\infty < \theta < \infty$. Find the MVUE of θ^2 .

Solution.

 $N(\theta, 1)$ is a member of the exponential family because

$$f(x;\theta) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}e^{-\frac{\theta^2}{2}}e^{x\theta} = h(x)k(\theta)e^{T(x)c(\theta)}.$$

Hence, $\sum_{i=1}^{n} X_i$ and \overline{X} is a complete sufficient statistic for θ . Further, since

$$E(\overline{X}^2) = \operatorname{Var}(\overline{X}) + E(\overline{X})^2 = \frac{1}{n} + \theta^2,$$

 $\overline{X}^2 - 1/n$ is the MVUE of θ^2 as $f(\overline{X}) = \overline{X}^2 - 1/n$ is also a complete sufficient statistic.

7.6.2. Let $X_1, X_2, ..., X_n$ denote a random sample from a distribution that is $N(0, \theta)$. Then $Y = \sum X_i^2$ is a complete sufficient statistic for θ . Find the MVUE of θ^2 .

Solution.

 $N(0,\theta)$ is a member of the exponential family because

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{x^2}{2\theta}} = k(\theta)e^{T(x)c(\theta)}.$$

Hence, $\sum_{i=1}^{n} X_i^2$ is a complete sufficient statistic for θ . Here, we know that $X_i/\sqrt{\theta}$ are iid N(0,1) and then $\sum X_i^2/\theta = Y/\theta \sim \chi^2(n)$. Hence,

$$E(Y/\theta) = n \Rightarrow E(Y) = n\theta,$$

Var(Y/\theta) = 2n \Rightarrow Var(Y) = 2n\theta^2

which follows $E(Y^2) = \operatorname{Var}(Y) + E(Y)^2 = 2n\theta^2 + (n\theta)^2 = (n^2 + 2n)\theta^2$, indicating that $Y^2/(n^2 + 2n)$ is the MVUE of θ^2 because $Y^2/(n^2 + 2n)$, a function of the sufficient statistic Y, is also complete sufficient statistic.

7.6.6. Let $X_1, X_2, ..., X_n$ be a random sample from a Poisson distribution with parameter $\theta > 0$.

(a) Find the MVUE of $P(X \le 1) = (1 + \theta)e^{-\theta}$. *Hint*: Let $u(X_1) = 1, X_1 \le 1$, zero elsewhere, and find $E[u(X_1)|Y = y]$, where $Y = \sum_{i=1}^{n} X_i$.

Solution.

By Exercise 7.3.6, we have $X_1|Y = y \sim \text{Binomial}(y_1, 1/n)$. Hence,

$$E[u(X_1)|Y_1 = y_1] = \sum_{x_1=0}^{1} {\binom{y}{x_1}} \left(\frac{1}{n}\right)^{x_1} \left(1 - \frac{1}{n}\right)^{y-x_1}$$
$$= \left(1 - \frac{1}{n}\right)^y + \left(\frac{y}{n}\right) \left(1 - \frac{1}{n}\right)^{y-1}$$
$$= \left(\frac{n-1}{n}\right)^y \left(1 + \frac{y}{n-1}\right),$$

which gives us the MVUE of $(X \leq 1)$:

$$\left(\frac{n-1}{n}\right)^Y \left(1 + \frac{Y}{n-1}\right).$$

(b) Express the MVUE as a function of the mle of θ .

Solution.

We know the mle of θ is $\hat{\theta} = \overline{X} = Y/n$ in this case. Thus, we can express the MVUE as

$$\left(\frac{n-1}{n}\right)^{n\overline{X}} \left(1 + \frac{n\overline{X}}{n-1}\right).$$

(c) Determine the asymptotic distribution of the mle of θ .

Solution. Since $E(X) = \operatorname{Var}(X) = \theta$, CLT gives $\sqrt{n}(\overline{X} - \theta) \xrightarrow{D} N(0, \theta)$, that is, \overline{X} approx. $N(\theta, \theta/n)$.

(d) Obtain the mle of $P(X \le 1)$. Then use Theorem 5.2.9 to determine its asymptotic distribution.

Solution.

By the invariance of MLE, $P(\widehat{X \leq 1}) = (1 + \widehat{\theta})e^{-\widehat{\theta}} = (1 + \overline{X})e^{-\overline{X}}$. Let $g(x) = (1 + x)e^{-x}$, which is continuous and $g'(x) = -xe^{-x}$. Then using the Delta method, we obtain

$$\begin{split} & \sqrt{n}(g(\overline{X}) - g(\theta)) \stackrel{D}{\to} N(0, [g'(\theta)]^2 \theta) \\ \Rightarrow & \sqrt{n}(\widehat{P(X \leq 1)} - (1 + \theta)e^{-\theta}) \stackrel{D}{\to} N(0, \theta^3 e^{-2\theta}) \\ & \widehat{P(X \leq 1)} \text{ approx. } N((1 + \theta)e^{-\theta}, \theta^3 e^{-2\theta}/n) \end{split}$$

7.6.7 Let $X_1, X_2, ..., X_n$ denote a random sample from a Poisson distribution with parameter $\theta > 0$. From Remark 7.6.1, we know that $E[(-1)^{X_1}] = e^{-2\theta}$.

(a) Show that $E[(-1)^{X_1}|Y_1 = y_1] = (1 - 2/n)^{y_1}$, where $Y_1 = X_1 + X_2 + \dots + X_n$.

Solution.

By Exercise 7.3.6, we have $X_1|Y_1 = y_1 \sim \text{Binomial}(y_1, 1/n)$. Hence,

$$E[(-1)^{X_1}|Y_1 = y_1] = \sum_{x_1=0}^n (-1)^{x_1} {y_1 \choose x_1} \left(\frac{1}{n}\right)^{x_1} \left(1 - \frac{1}{n}\right)^{y_1 - x_1}$$
$$= \sum_{x_1=0}^n {y_1 \choose x_1} \left(-\frac{1}{n}\right)^{x_1} \left(1 - \frac{1}{n}\right)^{y_1 - x_1}$$
$$= \left(-\frac{1}{n} + 1 - \frac{1}{n}\right)^{y_1}$$
$$= \left(1 - \frac{2}{n}\right)^{y_1},$$

which implies that $(1-2/n)^{Y_1}$ is the MVUE of $e^{-2\theta}$.

(b) Show that the mle of $e^{-2\theta}$ is $e^{-2\overline{X}}$.

Solution. Since the mle of θ is $\hat{\theta} = \overline{X}$ (omitted the proof), $e^{-2\theta} = e^{-2\overline{X}}$ by the invariance of MLE. (c) Since $y_1 = n\overline{x}$, show that $(1 - 2/n)^{y_1}$ is approximately equal to $e^{-2\overline{x}}$ when *n* is large.

Solution.

$$\left(1-\frac{2}{n}\right)^{y_1} = \left(1-\frac{2}{n}\right)^{n\overline{x}} = \left[\left(1-\frac{2}{n}\right)^n\right]^{\overline{x}} \to e^{-2\overline{x}}$$

which follows that the MVUE of $e^{-2\theta}$ is identical with the MLE as $n \to \infty$.

7.6.10. Let $X_1, X_2, ..., X_n$ be a random sample with the common pdf $f(x) = \theta^{-1} e^{-x/\theta}$, for x > 0, zero elsewhere; that is, f(x) is a $\Gamma(1, \theta)$ pdf.

(a) Show that the statistic $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic for θ .

Solution.

Since $\Gamma(1,\theta)$ is a member of exponential family, $Y = \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic for θ . Then, so does \overline{X} because it is a function of Y.

(b) Determine the MVUE of θ .

Solution. $E(\overline{X}) = E(X) = \theta$. By part (a) and the Lehmann-Scheffe theorem, \overline{X} is the MVUE of θ .

(c) Determine the mle of θ .

Solution. We know that $\hat{\theta} = \overline{X}/\alpha = \overline{X}$ (omitted the proof).

(d) Often, though, this pdf is written as $f(x) = \tau e^{-\tau x}$, for x > 0, zero elsewhere. Thus $\tau = 1/\theta$. Use Theorem 6.1.2 to determine the mle of τ .

Solution. By the invariance of MLE, $\hat{\tau} = 1/\hat{\theta} = 1/\overline{X}$.

(e) Show that the statistic $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic for τ . Show that $(n-1)/(n\overline{X})$ is the MVUE of $\tau = 1/\theta$. Hence, as usual, the reciprocal of the mle of θ is the mle of $1/\theta$, but, in this situation, the reciprocal of the MVUE of θ is not the MVUE of $1/\theta$.

Solution.

By the factorization theorem (and nature of the exponential family), $Y = \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic for θ . Then, so does \overline{X} because it is a function of Y. Also, we know $Y = n\overline{X} \sim \Gamma(n, 1/\theta)$ obtained from the mgf of X. Thus,

$$E\left(\frac{1}{Y}\right) = \frac{\tau^n}{\Gamma(n)} \frac{\Gamma(n-1)}{\tau^{n-1}} = \frac{\tau}{n-1}$$

indicating that (n-1)/Y is the MVUE of $\tau = 1/\theta$.

(f) Compute the variances of each of the unbiased estimators in parts (b) and (e).

Solution.

For part (b),

$$\operatorname{Var}(\overline{X}) = \frac{\operatorname{Var}(X)}{n} = \frac{\theta^2}{n}.$$

For part (e),

$$E\left(\frac{1}{Y^2}\right) = \frac{\tau^n}{\Gamma(n)} \frac{\Gamma(n-2)}{\tau^{n-2}} = \frac{\tau^2}{(n-1)(n-2)}$$
$$\Rightarrow \operatorname{Var}\left(\frac{1}{Y}\right) = E\left(\frac{1}{Y^2}\right) - E\left(\frac{1}{Y}\right)^2 = \frac{\tau^2}{(n-1)^2(n-2)}$$
$$\Rightarrow \operatorname{Var}\left(\frac{n-1}{Y}\right) = \frac{\tau^2}{n-2}.$$

7.6.11. Consider the situation of the last exercise, but suppose we have the following two independent random samples: (1) $X_1, X_2, ..., X_n$ is a random sample with the common pdf $f_X(x) = \theta^{-1}e^{-x/\theta}$, for x > 0, zero elsewhere, and (2) $Y_1, Y_2, ..., Y_n$ is a random sample with common pdf $f_Y(y) = \theta e^{-\theta y}$, for y > 0, zero elsewhere. The last exercise suggests that, for some constant $c, Z = c\overline{X}/\overline{Y}$ might be an unbiased estimator of θ^2 . Find this constant c and the variance of Z.

Solution.

We have $X \sim \Gamma(1, \theta)$ and $Y \sim \Gamma(1, 2/\theta)$. Hence,

$$\begin{split} &\frac{2\sum_{1}^{n}X_{i}}{\theta}=\frac{2n\overline{X}}{\theta}\sim\Gamma(n,2)=\chi^{2}(2n),\\ &2\theta\sum_{1}^{n}Y_{i}=2n\theta\overline{Y}\sim\Gamma(n,2)=\chi^{2}(2n), \end{split}$$

which gives us the F statistic:

$$F = \frac{(2n\overline{X}/\theta)/2n}{2n\theta\overline{Y}/2n} = \frac{\overline{X}}{\theta^2\overline{Y}} \sim F(2n, 2n).$$

Hence,

$$E(F) = E\left(\frac{\overline{X}}{\theta^2 \overline{Y}}\right) = \frac{2n}{2n-2} = \frac{n}{n-1} \Rightarrow E\left(\frac{n-1}{n} \frac{\overline{X}}{\overline{Y}}\right) = \theta^2 \Rightarrow c = \frac{n-1}{n}$$
$$\operatorname{Var}(F) = \operatorname{Var}\left(\frac{\overline{X}}{\theta^2 \overline{Y}}\right) = \frac{2(2n)^2(2n+2n-2)}{2n(2n-2)^2(2n-4)} = \frac{n(2n-1)}{(n-1)^2(n-2)}$$
$$\Rightarrow \operatorname{Var}(Z) = \left(\frac{n-1}{n}\right)^2 \operatorname{Var}\left(\frac{\overline{X}}{\overline{Y}}\right) = \left(\frac{n-1}{n}\right)^2 \frac{n(2n-1)}{(n-1)^2(n-2)}\theta^2 = \frac{2n-1}{n(n-2)}\theta^4.$$