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Note

• Not all solutions are provided: Exercises that are too simple or not very important to me are skipped.

• Texts in red are just attentions to me. Please ignore them.

7 Sufficiency

7.1 Measures of Quality of Estimators

Note that loss function problems were skipped because this kind of topic was not covered in my class.

7.1.1. Show that the mean X of a random sample of size n from a distribution having pdf f(x; θ) =
(1/θ)e−(x/θ) , 0 < x <∞, 0 < θ <∞, zero elsewhere, is an unbiased estimator of θ and has variance θ2/n.

Solution. Since X ∼ Γ(1, θ), E(X) = θ and Var(X) = θ2. Thus, E(X) = θ and Var(X) = θ2/n.

7.1.2. Let X1, X2, ..., Xn denote a random sample from a normal distribution with mean zero and variance
θ, 0 < θ <∞. Show that

∑n
1 X

2
i /n is an unbiased estimator of θ and has variance 2θ2/n.

Solution.

Since X/
√
θ are iid N(0, 1),

∑
iX

2
i /θ ∼ χ2(n). Hence,

E
(∑

X2
i /θ

)
= n, ⇒ E

(∑
Xi/n

)
= θ,

Var
(∑

X2
i /θ

)
= 2n, ⇒ Var

(∑
Xi/n

)
= 2θ2/n.

7.1.3. Let Y1 < Y2 < Y3 be the order statistics of a random sample of size 3 from the uniform distribution
having pdf f(x; θ) = 1/θ, 0 < x < θ, 0 < θ < ∞, zero elsewhere. Show that 4Y1, 2Y2, and

4
3Y3 are all

unbiased estimators of θ. Find the variance of each of these unbiased estimators.

Solution.

Note that the order statistics from a uniform distribution have a beta distribution.

By the theorem of a pdf of the order statistic, we obtain

fY1
(y) =

3!

0!2!
[1− FX(y)]2fX(y) =

3

θ

(
1− y

θ

)2

,

fY2
(y) =

3!

1!1!
FX(y)[1− FX(y)]fX(y) =

6

θ

(y
θ

)(
1− y

θ

)
,

fY3
(y) =

3!

2!0!
FX(y)2fX(y) =

3

θ

(y
θ

)2

.
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Hence, let y/θ = w, dy = θdw, then

E(Y1) =

∫ θ

0

3
y

θ

(
1− y

θ

)2

dy = 3θ

∫ 1

0

w (1− w)
2
dw = 3θ

Γ(2)Γ(3)

Γ(5)
=
θ

4
,

E(Y2) =

∫ θ

0

6
(y
θ

)2 (
1− y

θ

)
dy = 6θ

∫ 1

0

w2 (1− w) dw = 6θ
Γ(3)Γ(2)

Γ(5)
=
θ

2
,

E(Y3) =

∫ θ

0

3
(y
θ

)3

dy = 3θ

∫ 1

0

w3dw = 3θ
Γ(4)Γ(1)

Γ(5)
=

3θ

4
,

which is the desired result.

7.1.4. Let Y1 and Y2 be two independent unbiased estimators of θ. Assume that the variance of Y1 is twice
the variance of Y2. Find the constants k1 and k2 so that k1Y1 + k2Y2 is an unbiased estimator with the
smallest possible variance for such a linear combination.

Solution.

Given that k1Y1 + k2Y2 is unbiased,

E(k1Y1 + k2Y2) = (k1 + k2)θ ⇒ k1 + k2 = 1.

Hence,

Var(k1Y1 + k2Y2) = (k21 + k22/2)VarY1

= [2k1 + (1− k1)
2]VarY1/2

= (3k21 − 2k1 + 1)VarY1/2

= [3(k1 − 1/3)2 + 2/3]VarY1/2

≥ (1/3)VarY1,

suggesting that k1 = 1/3, k2 = 2/3 that minimize the variance for k1Y1 + k2Y2.

7.2 A Sufficient Statistic for a Parameter

Here, I used the definition of the exponential family as appropriate: Suppose

f(x; θ) = h(x)k(θ)eT (x)c(θ),

where c(θ) is nonconstant, T ′(x) is continuous. Then T =
∑
T (Xi) is (complete) and sufficient for θ.

7.2.1. Let X1, X2, ..., Xn be iid N(0, θ), 0 < θ <∞. Show that
∑n

1 X
2
i is a sufficient statistic for θ.

Solution.

The pdf of X is f(x; θ) = (2πθ)−1/2e−x2/(2θ), which is clearly a member of the exponential family where
T (x) = x2. Hence, T =

∑n
1 T (Xi) =

∑n
1 X

2
i is sufficient for θ.

7.2.2. Prove that the sum of the observations of a random sample of size n from a Poisson distribution
having parameter θ, 0 < θ <∞, is a sufficient statistic for θ.

Solution.

The pdf of X is f(x; θ) = (x!)−1e−θex log θ, which is a member of the exponential family where T (x) = x.
Hence, T =

∑n
1 T (Xi) =

∑n
1 Xi is a sufficient statistic for θ.

7.2.3. Show that the nth order statistic of a random sample of size n from the uniform distribution having
pdf f(x; θ) = 1/θ, 0 < x < θ, 0 < θ < ∞, zero elsewhere, is a sufficient statistic for θ. Generalize this result
by considering the pdf f(x; θ) = Q(θ)M(x), 0 < x < θ, 0 < θ <∞, zero elsewhere. Here, of course,∫ θ

0

M(x)dx =
1

Q(θ)
.
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Solution.

Show only the general case. The joint pdf, or likelihood function, is given by

L(θ;x) = [Q(θ)]n
n∏
1

M(xi)I(0 < xi < θ)

= [Q(θ)]nI(0 < yn < θ)

n∏
1

M(xi)

≡ k(x; θ)h(x),

zero elsewhere. By the factorization theorem, Yn is a sufficient statistic for θ.

7.2.4. Let X1, X2, ..., Xn be a random sample of size n from a geometric distribution that has pmf f(x; θ) =
(1− θ)xθ, x = 0, 1, 2, ..., 0 < θ < 1, zero elsewhere. Show that

∑n
1 Xi is a sufficient statistic for θ.

Solution.

The pdf of X (Geomatric distribution) is expressed as f(x; θ) = θex log(1−θ), which is a member of the
exponential family where T (x) = x. Hence, T =

∑n
1 T (Xi) =

∑n
1 Xi is a sufficient statistic for θ.

7.2.5. Show that the sum of the observations of a random sample of size n from a gamma distribution that
has pdf f(x; θ) = (1/θ)e−x/θ, 0 < x <∞, 0 < θ <∞, zero elsewhere, is a sufficient statistic for θ.

Solution.

The pdf of X clearly shows that Γ(1, θ) or Exponential distribution is a member of the exponential family
where T (x) = x. Hence, T =

∑n
1 T (Xi) =

∑n
1 Xi is a sufficient statistic for θ, which is the desired result.

7.2.6. Let X1, X2, ..., Xn be a random sample of size n from a beta distribution with parameters α = θ and
β = 5. Show that the product X1X2 · · ·Xn is a sufficient statistic for θ.

Solution.

The pdf of X is expressed as f(x; θ) = B(θ, 5)−1(1 − x)4e(θ−1) log x, which is a member of the exponential
family where T (x) = log x. Hence, T =

∑n
1 logXi = log

∏n
1 Xi, i.e.,

∏n
1 Xi is a sufficient statistic for θ.

7.2.7. Show that the product of the sample observations is a sufficient statistic for θ > 0 if the random
sample is taken from a gamma distribution with parameters α = θ and β = 6.

Solution.

The pdf of Γ(θ, 6) is expressed as f(x; θ) = (Γ(θ)6θ)−1e−x/6e(θ−1) log x, which is a member of the exponential
family where T (x) = log x. Hence, T =

∑n
1 logXi = log

∏n
1 Xi, i.e.,

∏n
1 Xi is a sufficient statistic for θ.

7.2.8. What is the sufficient statistic for θ if the sample arises from a beta distribution in which α = β =
θ > 0?

Solution.

The pdf of Beta(θ, θ) is given by f(x, θ) = B(θ, θ)−1 exp [(θ − 1) log x(1− x)] , which is a member of the
exponential family because h(x) = 1, k(θ) = B(θ, θ)−1, T (x) = log x(1 − x) and c(θ) = θ − 1. Hence,∑n

1 logXi(1−Xi) or
∏n

1 Xi(1−Xi) is sufficient for θ.

7.3. Properties of a Sufficient Statistic

7.3.1. In each of Exercises 7.2.1–7.2.4, show that the mle of θ is a function of the sufficient statistic for θ.

Solution.

The mles of Exercises 7.2.1–7.2.4 are, respectively, n−1
∑
X2

i , X, Yn, and (1 +X)−1, which are a function
of each sufficient statistic for θ.
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7.3.2. Let Y1 < Y2 < Y3 < Y4 < Y5 be the order statistics of a random sample of size 5 from the uniform
distribution having pdf f(x; θ) = 1/θ, 0 < x < θ, 0 < θ < ∞, zero elsewhere. Show that 2Y3 is an unbiased
estimator of θ. Determine the joint pdf of Y3 and the sufficient statistic Y5 for θ. Find the conditional
expectation E(2Y3|y5) = ϕ(y5). Compare the variances of 2Y3 and ϕ(Y5).

Solution.

fY3
(y3) =

5!

2!2!
FX(y3)

2[1− FX(y3]
2fX(y3) =

30

θ

(y3
θ

)2 (
1− y3

θ

)2

.

Let y/θ = w, then

E(Y3) =

∫ 1

0

30θw3(1− w)2dw = 30θ
Γ(4)Γ(3)

Γ(7)
=
θ

2
,

indicating 2Y3 is unbiased for θ.

The pdf of Y5 and the joint pdf of Y3 and Y5 are, respectively,

fY5
(y5) = 5

y45
θ5

0 < y5 < θ

fY3,Y5(y3, y5) = · · · = 60

θ2

(y3
θ

)2
(
y5 − y3
θ

)
=

60

θ5
y23(y5 − y3), 0 < y3 < y5 < θ.

Hence,

E(2Y3|y5) =
∫ y5

0

2y3
60y23(y5 − y3)/θ

5

5y45/θ5
=

24

y5

∫ y5

0

(y33y5 − y43)dy3 =
6y5
5
.

Since E(Y 2
3 ) = 2θ2/7, Var(Y3) = 2θ2/7− (θ/2)2 = θ2/28. Hence, Var(2Y3) = 4Var(Y3) = θ2/7. Also,

E(Y5) = · · · = 5

6
θ, E(Y 2

5 ) = · · · = 5

7
θ2 ⇒ Var(Y5) =

5

7
θ2 − 25

36
θ2 =

5

(36)(7)
θ2.

Therefore,

Var(ϕ(Y5)) = Var(6Y3/5) =
36

25
Var(Y5) =

1

35
θ2 < Var(2Y3),

which is the desired result.

7.3.3. If X1, X2 is a random sample of size 2 from a distribution having pdf f(x; θ) = (1/θ)e−x/θ, 0 < x <∞,
0 < θ <∞, zero elsewhere, find the joint pdf of the sufficient statistic Y1 = X1+X2 for θ and Y2 = X2. Show
that Y2 is an unbiased estimator of θ with variance θ2. Find E(Y2|y1) = ϕ(y1) and the variance of ϕ(Y1).

Solution.

First, the joint pdf of X1 and X2 is

fX1,X2
(x1, x2) = θ−2e−(x1+x2)/θ, 0 < x1 <∞, 0 < x2 <∞.

The inverse functions are x1 = y1 − y2 and x2 = y2, which gives us J = 1. So, the joint pdf of Y1 and Y2 is

fY1,Y2(y1, y2) = fX1,X2(y1 − y2, y2)|J | = θ−2e−y1/θ, 0 < y2 < y1 <∞.

Since Y2 = X2 ∼ Γ(1, θ), E(Y2) = θ and Var(Y2) = θ2.

Next, the pdf of Y1 is

fY1
(y1) =

∫ y1

0

θ−2e−y1/θdy2 = θ−2y1e
−y1/θ,

4



which gives the conditonal pdf:

fY2|Y1
(y2|y1) =

fY1,Y2
(y1, y2)

fY1
(y1)

= y−1
1 , 0 < y2 < y1 <∞.

Hence,

E(Y2|y1) =
∫ y1

0

y2fY2|Y1
(y2|y1)dy2 = y−1

1

∫ y1

0

y2dy2 =
y1
2
.

Since Y1 ∼ Γ(2, θ), Var(Y1) = 2θ2. So, Var(ϕ(Y1)) = Var(Y1)/4 = θ2/2.

7.3.4. Let f(x, y) = (2/θ2)e−(x+y)/θ, 0 < x < y < ∞, zero elsewhere, be the joint pdf of the random
variables X and Y .

(a) Show that the mean and the variance of Y are, respectively, 3θ/2 and 5θ2/4.

Solution.

fY (y) =

∫ y

0

(2/θ2)e−(x+y)/θdx = (2/θ)(e−y/θ − e−2y/θ).

Since the first and the second term follow 2Γ(1, θ) and Γ(1, θ/2), respectively, E(Y ) = 2θ− θ/2 = 3θ/2.
Also, E(Y 2) = · · · = 7θ2/2 indicating that Var(Y ) = 7θ2/2− (3θ/2)2 = 5θ2/4.

(b) Show that E(Y |x) = x + θ. In accordance with the theory, the expected value of X + θ is that of Y,
namely, 3θ/2, and the variance of X + θ is less than that of Y . Show that the variance of X + θ is in
fact θ2/4.

Solution.

Since fX(x) =
∫∞
x

(2/θ2)e−(x+y)/θdy = (2/θ)e−2x/θ,

fY |X(y|x) = f(x, y)

fX(x)
= (1/θ)e(x−y)/θ,

E(Y |X = x) =

∫ ∞

x

y(1/θ)e(x−y)/θdy = · · · = x+ θ,

implies that E(Y |X) = X + θ. And EX(E(Y |X)) = E(Y ) = 3θ/2 by iterative expectation.

Since X ∼ Γ(1, θ/2), Var(X + θ) = Var(X) = θ2/4.

7.3.5. In each of Exercises 7.2.1–7.2.3, compute the expected value of the given sufficient statistic and, in
each case, determine an unbiased estimator of θ that is a function of that sufficient statistic alone.

Solution.

For 7.2.1, E(
∑n

1 X
2
i ) = nE(X2) = nθ indicate that

∑n
1 X

2
i /n is an unbiased estimator of θ.

For 7.2.2, E(
∑n

1 Xi) = nE(X) = nθ indicate that
∑n

1 Xi/n is an unbiased estimator of θ.

For 7.2.3, fYn(y) = nyn−1/θn and E(Yn) =
n

n+1θ indicate that n+1
n Yn is an unbiased estimator of θ.

7.3.6. Let X1, X2, ..., Xn be a random sample from a Poisson distribution with mean θ. Find the conditional
expectation E(X1 + 2X2 + 3X3|

∑n
1 Xi).

Solution.

First, the expectation can be expanded by:

E(X1 + 2X2 + 3X3|
n∑
1

Xi) = E(X1|
n∑
1

Xi) + 2E(X2|
n∑
1

Xi) + 3E(X3|
n∑
1

Xi)

= 6E(X1|
n∑
1

Xi) since Xi are iid
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The conditional probability

P (X1 = x1|
n∑
1

Xi = x) =
P (X1 = x)P (

∑n
2 Xi = x− x1)

P (
∑n

1 Xi = x)
= · · · =

(
x

x1

)(
1

n

)x1
(
1− 1

n

)x−x1

,

indicates that

X1 = x1

∣∣∣ n∑
1

Xi = x ∼ Binomial

(
x,

1

n

)
.

Hence, the expectation is

E(X1|
n∑
1

Xi = x) =
x

n
⇒ E(X1|

n∑
1

Xi) =

∑n
1 Xi

n
= X,

which gives us

E(X1 + 2X2 + 3X3

∣∣∣ n∑
1

Xi) = 6X.

7.4. Completeness and Uniqueness

7.4.1. If az2 + bz + c = 0 for more than two values of z, then a = b = c = 0. Use this result to show that
the family {b(2, θ) : 0 < θ < 1} is complete.

Solution.

Suppose E[g(X)] = 0, then

2∑
x=0

g(x)

(
2

x

)
θx(1− θ)2−x = g(0)(1− 2θ + θ2) + 2g(1)(θ − θ2) + g(2)θ2

= [g(0)− 2g(1) + g(2)]θ2 + [−2g(0) + 2g(1)]θ + g(0)

= 0

requires g(0)− 2g(1)+ g(2) = −2g(0)+2g(1) = g(0), i.e., g(0) = g(1) = g(2) = 0, which is the desired result.

7.4.2. Show that each of the following families is not complete by finding at least one nonzero function u(x)
such that E[u(X)] = 0, for all θ > 0.

(a)

f(x; θ) =

{
1
2θ −θ < x < θ

0 elsewhere.

Solution. Since X ∼ U(−θ, θ), E(X) = 0. Thus, u(x) = x is one nonzero function we want.

(b) N(0, θ), where 0 < θ <∞.

Solution. We know E(X) = 0. Thus, u(x) = x is one nonzero function that is desired.

7.4.3. Let X1, X2, ..., Xn represent a random sample from the discrete distribution having the pmf

f(x; θ) =

{
θx(1− θ)1−x x = 0, 1, 0 < θ < 1

0 elsewhere.

Show that Y1 =
∑n

1 Xi is a complete sufficient statistic for θ. Find the unique function of Y1 that is the
MVUE of θ.
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Solution.

We know that X has a Bernoulli distribution that is a member of the exponential family. Then we can say
Y1 ∼ Binom(n, θ) is a complete sufficient statistic for θ. Since E(Y1) = nθ, Y1/n is the MVUE of θ.

7.4.4 Consider the family of probability density functions {h(z; θ) : θ ∈ Ω}, where h(z; θ) = 1/θ, 0 < z < θ,
zero elsewhere.

(a) Show that the family is complete provided that Ω = {θ : 0 < θ <∞}.
Hint : For convenience, assume that u(z) is continuous and note that the derivative of E[u(Z)] with
respect to θ is equal to zero also.

Solution.

This is a simple case. Suppose E[u(Z)] = 0, then∫ θ

0

u(z)/θdz = 0 ⇒ d

dθ

∫ θ

0

u(z)/θdz = 0 ⇒ u(θ) = 0 (θ > 0).

Since z > 0, it says g(z) = 0, which is the desired result.

(b) Show that this family is not complete if Ω = {θ : 1 < θ <∞}.
Hint : Concentrate on the interval 0 < z < 1 and find a nonzero function u(z) on that interval such
that E[u(Z)] = 0 for all θ > 1.

Solution.

This is a complicated case since E[u(Z)] = 0 ⇒ u(θ) = 0, θ > 1, which does not contain 0 < z < 1. In
this cases,

E[u(Z)] = 0 ⇒
∫ θ

0

u(z)/θdz =

∫ 1

0

u(z)/θdz +

∫ θ

1

u(z)/θdz = 0.

Consider to make the first term on the left side zero. let

u(z) =

{
z − 1

2 0 < z < 1

0 elsewhere.

Then, we find that ∫ 1

0

(z − 1/2)/θdz +

∫ θ

1

0/θdz =

[
1

2θ

(
z − 1

2

)2
]1

0

= 0.

7.4.5. Show that the first order statistic Y1 of a random sample of size n from the distribution having pdf
f(x; θ) = e−(x−θ), θ < x <∞, −∞ < θ <∞, zero elsewhere, is a complete sufficient statistic for θ. Find the
unique function of this statistic which is the MVUE of θ.

Solution.

L(θ;x) =

n∏
1

e−(xi−θ)I(θ < xi) = e−(
∑

xi−nθ)I(θ < y1),

indicating that Y1 is sufficient for θ. Then, the pdf of Y1 is

fY1
(y1) = · · · = ne−n(y1−θ), y1 > θ.

Further, suppose E[g(Y1)] = 0, then∫ ∞

θ

g(y1)ne
−n(y1−θ)dy1 = 0 ⇒ ng(θ) = 0 ⇒ g(θ) = 0, −∞ < θ <∞.

7



Thus, g(y1) = 0, for all y1 > θ indicating that Y1 is a complete statistic for θ. Finally,

E(Y1) =

∫ ∞

θ

ny1e
−n(y1−θ)dy1 = · · · = θ +

1

n
,

implies that Y1 − 1/n is the MVUE of θ by the Lehmann-Scheffe.

7.4.7. Let X have the pdf fX(x; θ) = 1/(2θ), for −θ < x < θ, zero elsewhere, where θ > 0.

(a) Is the statistic Y = |X| a sufficient statistic for θ? Why?

Solution.

Yes; because the joint pdf of X (or likelihood) is

L(θ;x) =

n∏
1

(2θ)−1I(−θ < xi < θ) = (2θ)−n
n∏

i=1

I(|xi| < θ),

implies that Y = |X| a sufficient statistic by the factorization theorem.

(b) Let fY (y; θ) be the pdf of Y . Is the family {fY (y; θ) : θ > 0} complete? Why?

Solution.

FY (y) = P (Y ≤ y) = P (|X| ≤ y) = P (−y ≤ X ≤ y) =


0 y ≤ 0

y/θ 0 < y < θ

1 y ≥ θ,

gives us fY (y) = 1/θ, 0 < θ < 1, zero elsewhere. i.e., Y ∼ U(0, θ). Suppose E[g(Y )] = 0, then∫ θ

0

g(y)/θdy = 0 ⇒ g(θ)/θ = 0, θ > 0 ⇒ g(y) = 0, y > 0.

Hence, the answer is yes; Y is a complete statistic for θ.

7.4.9. Let X1, ..., Xn be iid with pdf f(x; θ) = 1/(3θ), −θ < x < 2θ, zero elsewhere, where θ > 0.

(a) Find the mle θ̂ of θ.

Solution.

The joint pdf of X (or likelihood) is

L(θ;x) =

n∏
1

(3θ)−1I(−θ < xi < 2θ)

= (3θ)−nI(−θ < y1 < yn < 2θ)

= (3θ)−nI(θ > −y1 and θ > yn/2),

indicating that θ̂ = max(−Y1, 0.5Yn).

(b) Is θ̂ a sufficient statistic for θ? Why?

Solution. Yes; by part (a) and the factorization theorem.

(c) Is (n+ 1)θ̂/n the unique MVUE of θ? Why?

Solution.

Skipped; the calculation should be so heavy. I will separate it into two cases: θ̂ = −Y1 and θ̂ = 0.5Yn
to show E(θ̂) = (n/(n+ 1)θ.
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7.4.10. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size n from a distribution
with pdf f(x; θ) = 1/θ, 0 < x < θ, zero elsewhere. By Example 7.4.2, the statistic Yn is a complete sufficient
statistic for θ and it has pdf

g(yn; θ) =
nyn−1

θn
, 0 < yn < θ,

and zero elsewhere.

(a) Find the distribution function Hn(z; θ) of Z = n(θ − Yn).

Solution.

Since the cdf of Yn is G(yn) = yn/θn, 0 < yn < θ,

Hn(z; θ) = P (Z ≤ z) = P (Yn ≥ θ − z/n) = 1− P (Yn < θ − z/n)

= 1−G(θ − z/n)

= 1− (θ − z/n)n

θn

= 1−
(
1− z/θ

n

)n

.

(b) Find the limn→∞Hn(z; θ) and thus the limiting distribution of Z.

Solution. By part (a), Hn(z; θ) → 1− e−z/θ as n→ ∞. That is Z ∼ Γ(1, θ).

7.5. The Exponential Class of Distributions

7.5.1. Write the pdf

f(x; θ) =
1

6θ4
x3e−x/θ, 0 < x <∞, 0 < θ <∞,

zero elsewhere, in the exponential form. If X1, X2, ..., Xn is a random sample from this distribution, find a
complete sufficient statistic Y1 for θ and the unique function ψ(Y1) of this statistic that is the MVUE of θ.
Is ψ(Y1) itself a complete sufficient statistic?

Solution.

X ∼ Γ(4, θ) is clearly a member of the exponential family, so Y1 =
∑n

1 Xi is a complete sufficient statistic
for θ. We know Y1 ∼ Γ(4n, θ) indicating E(Y1) = 4nθ. Thus, Y1/(4n) = X/4 is the MVUE of θ. Clearly,
ψ(Y1), a function of Y1 alone, is a complete sufficient statistic.

7.5.2. Let X1, X2, ..., Xn denote a random sample of size n > 1 from a distribution with pdf f(x; θ) = θe−θx,
0 < x <∞, zero elsewhere, and θ > 0. Then Y =

∑n
1 Xi is a sufficient statistic for θ. Prove that (n− 1)/Y

is the MVUE of θ.

Solution.

Since X ∼ Γ(1, 1/θ), Y ∼ Γ(n, 1/θ): fY (y) = [θn/Γ(n)]yn−1e−θy, 0 < y <∞. Hence

E

(
1

Y

)
=

∫ ∞

0

θn

Γ(n)
yn−2e−θydy =

θn

Γ(n)

Γ(n− 1)

θn−1
=

θ

n− 1
,

indicating that (n− 1)/Y is the MVUE of θ.

7.5.3. Let X1, X2, ..., Xn denote a random sample of size n from a distribution with pdf f(x; θ) = θxθ−1, 0 <
x < 1, zero elsewhere, and θ > 0.
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(a) Show that the geometric mean (X1X2 · · ·Xn)
1/n of the sample is a complete sufficient statistic for θ.

Solution.

f(x; θ) = θe(θ−1) log x, 0 < x < 1 implies that this distribution is a member of the exponential family.
Since

∑n
1 logXi = log

∏n
1 Xi,

∏n
1 Xi is a complete sufficient statistic for θ. The statistic is one-to-one,

so (
∏n

1 Xi)
1/n, the geometric mean, is also complete and sufficient for θ.

(b) Find the maximum likelihood estimator of θ, and observe that it is a function of this geometric mean.

Solution.

Solving ℓ′(θ) = 0 and ℓ′′(θ) < 0, we obtain the mle, θ̂ = −n/ log
∏n

1 Xi = −1/ log(
∏n

1 Xi)
1/n, which is

a function of this geometric mean.

7.5.6. Given that f(x; θ) = exp[θK(x) +H(x) + q(θ)], a < x < b, γ < θ < δ, represents a regular case of the
exponential class, show that the moment-generating functionM(t) of Y = K(X) isM(t) = exp[q(θ)−q(θ+t)],
γ < θ + t < δ.

Solution.

MY (t) =

∫ b

a

exp[(θ + t)K(x) +H(x) + q(θ)]dx

= exp[q(θ)− q(θ + t)]

∫ b

a

exp[(θ + t)K(x) +H(x) + q(θ + t)]dx

= exp[q(θ)− q(θ + t)]

∫ b

a

f(x; θ + t)dx

= exp[q(θ)− q(θ + t)], γ < θ + t < δ.

7.5.7. In the preceding exercise, given that E(Y ) = E[K(X)] = θ, prove that Y is N(θ, 1).
Hint : Consider M ′(0) = θ and solve the resulting differential equation.

Solution.

Let ψ(t) = logM(t) = q(θ)− q(θ + t). Then ψ′(t) = −q′(θ + t), so E(Y ) = ψ′(0) = −q′(θ), indicating

−q′(θ) = θ ⇒ q(θ) = −θ2/2 + C (constant).

Hence,

MY (t) = exp[q(θ)− q(θ + t)]

= exp[−θ2/2 + C − (−(θ + t)2/2 + C)]

= exp[−θ2/2 + (θ + t)2/2]

= exp[θt+ t2/2]

implies that Y ∼ N(θ, 1).

7.5.10. Let X1, X2, ..., Xn be a random sample from a distribution with pdf f(x; θ) = θ2xe−θx, 0 < x <∞,
where θ > 0.

(a) Argue that Y =
∑n

1 Xi is a complete sufficient statistic for θ.

Solution.

X ∼ Γ(2, 1/θ) is a member of the exponential family with T (X) = X. Thus, Y =
∑n

1 Xi is a complete
sufficient statistic for θ.

(b) Compute E(1/Y ) and find the function of Y that is the unique MVUE of θ.

Solution.

10



Since we have Y ∼ Γ(2n, 1/θ),

E(Y −1) =

∫ ∞

0

θ2n

Γ(2n)
y2n−2e−θydy =

θ2n

Γ(2n)

Γ(2n− 1)

θ2n−1
=

θ

2n− 1

indicating that (2n− 1)/Y is is the MVUE of θ.

7.5.11. Let X1, X2, ..., Xn, n > 2, be a random sample from the binomial distribution b(1, θ).

(a) Show that Y1 = X1 +X2 + · · ·+Xn is a complete sufficient statistic for θ.

Solution.

Since the Binomial distribution is a member of the exponential family and

f(x; θ) = θx(1− θ)1−x = exlogit(θ)+log(1−θ), x = 0, 1,

Y1 =
∑n

1 Xi is a complete sufficient statistic for θ.

(b) Find the function ψ(Y1) that is the MVUE of θ.

Solution. Since Y1 ∼ b(n, θ), E(Y1) = nθ. Thus, ψ(Y1) = Y1/n is the MVUE of θ by part (a).

(c) Let Y2 = (X1 +X2)/2 and compute E(Y2).

Solution. 2Y2 = X1 +X2 ∼ b(2, θ) gives E(2Y2) = 2θ ⇒ E(Y2) = θ.

(d) Determine E(Y2|Y1 = y1).

Solution.

By the iterative expectation and part (c), EY1
[E(Y2|Y1)] = E(Y2) = θ. Thus, E(Y2|Y1 = y1) is MVUE

of θ by the Rao-Blackwell and Lehmann-Scheffe theorems. By part (b), we found that Y1/n = X is
MVUE of θ, which shows E(Y2|Y1 = y1) = Y1/n.

7.5.12. Let X1, X2, ..., Xn be a random sample from a distribution with pmf p(x; θ) = θx(1 − θ), x =
0, 1, 2, . . . , zero elsewhere, where 0 ≤ θ ≤ 1.

(a) Find the mle, θ̂, of θ.

Solution.

Solving ℓ′(θ) = 0 and checking ℓ′′(θ) < 0, we obtain

θ̂ =
X

1 +X
.

(b) Show that
∑n

1 Xi is a complete sufficient statistic for θ.

Solution. X is a member of the exponential family and T (X) = X, which implies the desired result.

(c) Determine the MVUE of θ.

Since X has a negative binomial with parameter 1 and 1− θ, a member of the exponential family,

E(X) = E(X) =
θ

1− θ

and thus

X is MVUE of
θ

1− θ

⇒ g(X) is MVUE of g

(
θ

1− θ

)
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Let g(x) = x
1+x , then

g(X) =
X

1 +X
= θ̂, g

(
θ

1− θ

)
= θ.

Hence, the mle of θ is the MVUE of θ.

7.6. Functions of a Parameter

7.6.1. Let X1, X2, ..., Xn denote a random sample from a distribution that is N(θ, 1),−∞ < θ < ∞. Find
the MVUE of θ2.

Solution.

N(θ, 1) is a member of the exponential family because

f(x; θ) =
e−

x2

2

√
2π

e−
θ2

2 exθ = h(x)k(θ)eT (x)c(θ).

Hence,
∑n

1 Xi and X is a complete sufficient statistic for θ. Further, since

E(X
2
) = Var(X) + E(X)2 =

1

n
+ θ2,

X
2 − 1/n is the MVUE of θ2 as f(X) = X

2 − 1/n is also a complete sufficient statistic.

7.6.2. Let X1, X2, ..., Xn denote a random sample from a distribution that is N(0, θ). Then Y =
∑
X2

i is a
complete sufficient statistic for θ. Find the MVUE of θ2.

Solution.

N(0, θ) is a member of the exponential family because

f(x; θ) =
1√
2πθ

e−
x2

2θ = k(θ)eT (x)c(θ).

Hence,
∑n

1 X
2
i is a complete sufficient statistic for θ. Here, we know that Xi/

√
θ are iid N(0, 1) and then∑

X2
i /θ = Y/θ ∼ χ2(n). Hence,

E(Y/θ) = n ⇒ E(Y ) = nθ,

Var(Y/θ) = 2n ⇒ Var(Y ) = 2nθ2,

which follows E(Y 2) = Var(Y ) + E(Y )2 = 2nθ2 + (nθ)2 = (n2 + 2n)θ2, indicating that Y 2/(n2 + 2n) is the
MVUE of θ2 because Y 2/(n2+2n), a function of the sufficient statistic Y , is also complete sufficient statistic.

7.6.6. Let X1, X2, ..., Xn be a random sample from a Poisson distribution with parameter θ > 0.

(a) Find the MVUE of P (X ≤ 1) = (1 + θ)e−θ.
Hint : Let u(X1) = 1, X1 ≤ 1, zero elsewhere, and find E[u(X1)|Y = y], where Y =

∑n
1 Xi.

Solution.

By Exercise 7.3.6, we have X1|Y = y ∼ Binomial(y1, 1/n). Hence,

E[u(X1)|Y1 = y1] =

1∑
x1=0

(
y

x1

)(
1

n

)x1
(
1− 1

n

)y−x1

=

(
1− 1

n

)y

+
( y
n

)(
1− 1

n

)y−1

=

(
n− 1

n

)y (
1 +

y

n− 1

)
,
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which gives us the MVUE of (X ≤ 1):(
n− 1

n

)Y (
1 +

Y

n− 1

)
.

(b) Express the MVUE as a function of the mle of θ.

Solution.

We know the mle of θ is θ̂ = X = Y/n in this case. Thus, we can express the MVUE as(
n− 1

n

)nX (
1 +

nX

n− 1

)
.

(c) Determine the asymptotic distribution of the mle of θ.

Solution. Since E(X) = Var(X) = θ, CLT gives
√
n(X − θ)

D→ N(0, θ), that is, X approx. N(θ, θ/n).

(d) Obtain the mle of P (X ≤ 1). Then use Theorem 5.2.9 to determine its asymptotic distribution.

Solution.

By the invariance of MLE, ̂P (X ≤ 1) = (1 + θ̂)e−θ̂ = (1 + X)e−X . Let g(x) = (1 + x)e−x, which is
continuous and g′(x) = −xe−x. Then using the Delta method, we obtain

√
n(g(X)− g(θ))

D→N(0, [g′(θ)]2θ)

⇒
√
n( ̂P (X ≤ 1)− (1 + θ)e−θ)

D→N(0, θ3e−2θ)

̂P (X ≤ 1) approx. N((1 + θ)e−θ, θ3e−2θ/n).

7.6.7 Let X1, X2, ..., Xn denote a random sample from a Poisson distribution with parameter θ > 0. From
Remark 7.6.1, we know that E[(−1)X1 ] = e−2θ.

(a) Show that E[(−1)X1 |Y1 = y1] = (1− 2/n)y1 , where Y1 = X1 +X2 + · · ·+Xn.

Solution.

By Exercise 7.3.6, we have X1|Y1 = y1 ∼ Binomial(y1, 1/n). Hence,

E[(−1)X1 |Y1 = y1] =
n∑

x1=0

(−1)x1

(
y1
x1

)(
1

n

)x1
(
1− 1

n

)y1−x1

=

n∑
x1=0

(
y1
x1

)(
− 1

n

)x1
(
1− 1

n

)y1−x1

=

(
− 1

n
+ 1− 1

n

)y1

=

(
1− 2

n

)y1

,

which implies that (1− 2/n)
Y1 is the MVUE of e−2θ.

(b) Show that the mle of e−2θ is e−2X .

Solution. Since the mle of θ is θ̂ = X (omitted the proof), ê−2θ = e−2X by the invariance of MLE.

(c) Since y1 = nx, show that (1− 2/n)y1 is approximately equal to e−2x when n is large.
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Solution. (
1− 2

n

)y1

=

(
1− 2

n

)nx

=

[(
1− 2

n

)n]x
→ e−2x,

which follows that the MVUE of e−2θ is identical with the MLE as n→ ∞.

7.6.10. Let X1, X2, ..., Xn be a random sample with the common pdf f(x) = θ−1e−x/θ, for x > 0, zero
elsewhere; that is, f(x) is a Γ(1, θ) pdf.

(a) Show that the statistic X = n−1
∑n

i=1Xi is a complete and sufficient statistic for θ.

Solution.

Since Γ(1, θ) is a member of exponential family, Y =
∑n

i=1Xi is a complete and sufficient statistic for
θ. Then, so does X because it is a function of Y .

(b) Determine the MVUE of θ.

Solution. E(X) = E(X) = θ. By part (a) and the Lehmann-Scheffe theorem, X is the MVUE of θ.

(c) Determine the mle of θ.

Solution. We know that θ̂ = X/α = X (omitted the proof).

(d) Often, though, this pdf is written as f(x) = τe−τx, for x > 0, zero elsewhere. Thus τ = 1/θ. Use
Theorem 6.1.2 to determine the mle of τ .

Solution. By the invariance of MLE, τ̂ = 1/θ̂ = 1/X.

(e) Show that the statistic X = n−1
∑n

i=1Xi is a complete and sufficient statistic for τ . Show that
(n − 1)/(nX) is the MVUE of τ = 1/θ. Hence, as usual, the reciprocal of the mle of θ is the mle of
1/θ, but, in this situation, the reciprocal of the MVUE of θ is not the MVUE of 1/θ.

Solution.

By the factorization theorem (and nature of the exponential family), Y =
∑n

i=1Xi is a complete and
sufficient statistic for θ. Then, so does X because it is a function of Y . Also, we know Y = nX ∼
Γ(n, 1/θ) obtained from the mgf of X. Thus,

E

(
1

Y

)
=

τn

Γ(n)

Γ(n− 1)

τn−1
=

τ

n− 1
,

indicating that (n− 1)/Y is the MVUE of τ = 1/θ.

(f) Compute the variances of each of the unbiased estimators in parts (b) and (e).

Solution.

For part (b),

Var(X) =
Var(X)

n
=
θ2

n
.

For part (e),

E

(
1

Y 2

)
=

τn

Γ(n)

Γ(n− 2)

τn−2
=

τ2

(n− 1)(n− 2)

⇒Var

(
1

Y

)
= E

(
1

Y 2

)
− E

(
1

Y

)2

=
τ2

(n− 1)2(n− 2)

⇒Var

(
n− 1

Y

)
=

τ2

n− 2
.
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7.6.11. Consider the situation of the last exercise, but suppose we have the following two independent
random samples: (1) X1, X2, ..., Xn is a random sample with the common pdf fX(x) = θ−1e−x/θ, for x > 0,
zero elsewhere, and (2) Y1, Y2, ..., Yn is a random sample with common pdf fY (y) = θe−θy, for y > 0, zero
elsewhere. The last exercise suggests that, for some constant c, Z = cX/Y might be an unbiased estimator
of θ2. Find this constant c and the variance of Z.

Solution.

We have X ∼ Γ(1, θ) and Y ∼ Γ(1, 2/θ). Hence,

2
∑n

1 Xi

θ
=

2nX

θ
∼ Γ(n, 2) = χ2(2n),

2θ

n∑
1

Yi = 2nθY ∼ Γ(n, 2) = χ2(2n),

which gives us the F statistic:

F =
(2nX/θ)/2n

2nθY /2n
=

X

θ2Y
∼ F (2n, 2n).

Hence,

E(F ) = E

(
X

θ2Y

)
=

2n

2n− 2
=

n

n− 1
⇒ E

(
n− 1

n

X

Y

)
= θ2 ⇒ c =

n− 1

n

Var(F ) = Var

(
X

θ2Y

)
=

2(2n)2(2n+ 2n− 2)

2n(2n− 2)2(2n− 4)
=

n(2n− 1)

(n− 1)2(n− 2)

⇒ Var(Z) =

(
n− 1

n

)2

Var

(
X

Y

)
=

(
n− 1

n

)2
n(2n− 1)

(n− 1)2(n− 2)
θ2 =

2n− 1

n(n− 2)
θ4.
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